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Abstract: Current microprocessors incorporate techniques to aggressively exploit Instruction Level Parallelism 

(ILP). ILP can be exploited by different methods like Very-Long Instruction Word (VLIW) processing, Vector 

processing and array processing. This paper reviews various techniques to increase Instruction Level 

Parallelism. Techniques reviewed in this paper are Balanced Scheduling with Compiler Optimization, 

Instruction Pre-computation and Micro-threading. The survey reveals that, balanced scheduling with compiler 

optimization had a 10% advantage over traditional schedulers, Instruction Pre-computation had speedups of 

11.0%, while Micro-threading produce a speedup making it useful for Chip Multiprocessors.  
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1. Introduction 

 

Pipelining can overlap the execution of instructions, when they are independent of one another. This potential overlap 

among instruction is called instruction level parallelism (ILP), since instruction can be evaluated in parallel. It is a 

measure of how many number of the operations in a computer program can be performed simultaneously. There are two 

approaches to ILP: Hardware and Software. Hardware level works upon dynamic parallelism whereas; the software level 

works on static parallelism. The Pentium processor works on the dynamic sequence of parallel execution but the Itatnium 

processor works on the static level parallelism. A goal of compiler and processor designers is to identify and take 

advantage of as much ILP as possible.ILP allows the compiler and processor to overlap the execution of multiple 

instruction or even to change the order in which instruction are executed. 

There are different parallel processing techniques to exploit ILP: VLIW Processing, Vector Processing and Array 

Processing. In VLIW, ILP relies on the compiler to determine which instruction may be executed in parallel and 

providing that information to the processor hardware. Programs are required to be recompiled for new architecture, but 

achieve very good performance on programs written in sequential language such as C or FORTRAN when these 

programs are recompiled for a VLIW processor. In Vector Processing, the operations such as multiply are first divided 

into several steps and a stream of operands (vectors) operated in for each step parallel processing units. A Vector 

processor functions for ILP by using IP Architecture along with vector element operands in the parallel processing 

pipelines. It is most common special case of pipelining. 

 

2. Techniques to increase ILP 

 

A. The Balanced Scheduling with Compiler  Optimization 

 

Traditional instruction schedulers order load instructions based on an optimistic assumption that all loads will be cache 

hits. On most machines, this optimistic estimate is accurate because the processors block on cache misses. But processors 

with non-blocking Architecture, instruction latency is exposed to the compiler and becomes uncertain. Not only will the 

processor see both cache hits and misses, but also each level in the memory hierarchy will also introduce a new set of 

latencies. 

(i) Balanced Scheduling (BS) 

Balanced Scheduling is an algorithm that can generate schedules that adapt more readily to the uncertainties in memory 

latency. Rather than being determined by a predefined, Architecture based value load latency estimates are based on the 

number of independent instructions that are available to hide the latency of a particular load. Previous work has 

demonstrated that balanced schedules show speedups averaging 8% for several Perfect Club Benchmarks for two 

different cache hit/miss ratios, assuming a workstation like memory model in which cache misses are normally 
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distributed. This study combines Balanced Scheduling with 3 compiler optimizations that increase instruction level 

parallelism. 

(ii) Compiler Optimization 

Balanced Scheduling utilizes load level parallelism to hide the longer load latencies exposed by non-blocking processors. 

In this study, the effect of 3 techniques to increase ILP has been analyzed. 

a) Loop Unrolling         

Loop Unrolling increases the size of basic blocks by duplicating iterations a number of times equal to the unrolling 

factor. It contributes to increased performance in two ways. First, by creating multiple copies of the loop body; it 

decreases conditional branch and loop indexing overhead from all but the last copy. Second, the consequent increase in 

the size of the basic block can expose more ILP, thereby providing more opportunities for code scheduling.                                                             

b) Trace Scheduling 

Trace Scheduling enables more aggressive scheduling by permitting code motion across basic block boundaries. It 

creates traces of paths through each procedure, guided by the profiled execution frequencies for each basic block. The 

trace scheduler then picks a trace, in order of decreasing execution frequencies, and schedules the basic blocks in the 

trace as if they were a single block. Code motion takes into account the effects of scheduling instructions across 

conditional jumps and merges, following specific rules. The final schedule effectively combines into a single block 

which has been multiple blocks if generated by traditional scheduler. Figure 1 illustrates an example of TS. The trace 

scheduler identifies basic blocks 1,2,4, and 5 as single block(trace A) and block 3 forms its own trace(trace B). 

 

 

Fig 1: Example of Trace scheduling (Ref 1) 

 

c) Locality Analysis 

If the compiler can determine cache behavior, it can treat cache hits and misses differently. Cache hits can be scheduled 

using the traditional scheduling schemes. 

(iii) Effect of Optimization 

Balanced scheduled code consistently produced speedups over that generated by traditional scheduling. With only two 

exceptions, balanced scheduled code produced fewer load interlocks than that of traditional scheduler for all programs on 

all levels of optimization. The differences ranged from two or three times as many interlocks for the traditional 

scheduler.  

Locality analysis contributed additional speedup when applied along with other optimization. When used with loop 

unrolling, speedups of 1.28 and 1.31 were obtained over balanced scheduling alone, for unrolling factors of 4 and 8. 

When Trace scheduling was alone applied, these speedups reached 1.29 and 1.40.Table 1 shows the comparison of 

locality analysis results 

Table 2 shows the comparison between balanced scheduling and traditional scheduling. Optimization has increased the 

instruction level parallelism; therefore balanced scheduling was able to extend its advantage over traditional scheduling 

by exploiting the additional instruction level parallelism. 

The analysis reveals that balanced scheduling had a 10% advantage over traditional scheduling with simple model. It 

validates that balanced scheduling is on average superior to traditional scheduling. 
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   Optimization 

 

Speedup relative to locality 

analysis alone 

Speedup relative to balanced 

scheduling with no unrolling 

and no trace scheduling 

 

Locality analysis 

 

          na 

 

          1.15 

 

Locality analysis with loop 

unrolling by 4 

      

        1.11 

 

          1.28 

 

Locality analysis with loop 

unrolling by 8 

    

        1.14 

       

          1.31 

Locality analysis with trace 

scheduling and loop unrolling by 

4 

 

        1.12 

 

          1.29 

Locality analysis with trace 

scheduling and loop unrolling by 

8 

 

        1.21 

 

          1.40 

 
Table 1: Summary Comparison of locality analysis result (Ref 1) 

 

 

 

Optimization 

in addition to 

balanced 

scheduling 

 

Relative to traditional 

scheduling with the same 

optimization 

 

Relative to balanced 

scheduling with no other  

optimization 

 

Load interlock cycles remaining 

after applying optimization(% of 

total cycles) 

 

Program 

speedup 

 

Percentage 

decrease in 

load interlock 

cycles 

 

Program 

speedup 

 

Percentage 

decrease in 

load 

interlock 

cycles 

 

Balanced 

Scheduling 

  

Traditional 

scheduling 

 

No 

optimization 

 

1.05 

 

 51 

 

   na 

 

    

   na 

 

 

    7 

 

     15 

 

Loop 

unrolling by 4 

 

1.12 

 

  61 

 

 1.19 

 

   23 

 

    6 

 

     16 

 

Loop 

unrolling by 8 

 

1.18 

 

  62 

 

 1.28 

 

   26 

  

    6 

 

     16 

Trace 

scheduling 

with loop 

unrolling by 4 

 

1.14 

  

  65 

 

 1.19 

   

   42 

 

    5 

 

     15 

Trace 

scheduling 

with loop 

unrolling by 8 

 

1.16 

 

  56 

 

1.26 

 

  34 

 

    5 

 

    15 

 
Table 2: Summary comparison of balanced and traditional   scheduling (Ref 1) 
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B. Instruction Precomputation(IP) 

 

Value Reuse improves a processor’s performance by dynamically caching the results of previous instructions into the 

Value Reuse Table (VRT) and reusing those results to bypass the execution of future instructions that have the same 

opcode and input operands. This reuse increases the amount of ILP. Replacing the least recently used entries with the 

results of the current instruction could eventually fill the VRT with instructions that are not frequently used. This 

decreases the effectiveness of this method. 

Therefore, Instruction pre-computation is used to address the issue of frequency of execution. IP has two main steps: 

profiling and execution. In profiling step, the redundant computations with the highest frequencies or highest 

frequency/latency products (F/LPs), are found. The opcodes and input operands for these redundant computations are 

loaded into the pre-computation table (PT) before the program executes. During execution, PT functions like VRT but 

with two key differences: (a) The PT stores only highest frequency (F/LP) redundant computation, (b) The PT does not 

replace or update any entries. Therefore, it selectively targets those redundant computations that have an impact on the 

program. Table 3 shows the profiled benchmarks using two different input sets, A and B. 

 

Table 3: Selected Characteristics for the benchmarks previously tested (Ref 2) 

After profiling each benchmark, the unique computations were sorted by their frequency of execution. Figure 2 shows 

what percentage of the total instructions are due to the top 2048(by frequency) Arithmetic Unique Computations. 

 

Fig 2: Percentage of instructions that is due to the top 2048 arithmetic Unique   Computations (Ref 2). 

As can be seen in figure2, the top 2048 Arithmetic Unique Computations account for 14.7% to 44.5% (Input set A) and 

13.9% to 48.8% (B) of total instructions executed by the program. Furthermore, a small number of unique computations 

account for 3.1% to 19.6% (A) and 2.8% to 16.0% (B). Therefore, profiling a program to determine the highest 

frequency (F/LP) unique computations and putting them into a PT can significantly improve processor’s performance by 

reducing the effective latency of each instruction that matches a unique computation in the PT, even for very small 

tables. 

 (i) Instruction Pre-computation performance  

Figure 3 shows the speedup due to instruction pre-computation for various numbers of entries in the PT when input Set 

A is used for profiling and for execution. As shown in this figure, instruction pre-computation improves the performance 

of all benchmarks by an average of 4.6% (16 entries) to 12.2% (2048 entries). The average is the mean weighted by 

execution time. 
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Fig 3: Percent speedup due to Instruction Precomputation for various Table sizes; Profile Input set A, Run input set A (Ref 2) 

 

(ii) Comparison with value reuse 

Since instruction pre-computation is related to value reuse, it is necessary to compare the speedups of the two techniques. 

The following figure 4 compares the speedups of value reuse and instruction pre-computation for various table sizes.  

 

 

Fig 4: Speedup comparison between Value Reuse (VR) and Instruction Pre-computation (IP) for various table sizes; Profile 

input set A, Run input set B (Ref 2) 

 

In the above figure 4, three table sizes are shown-32, 256, 2048 entries. VR corresponds to Value Reuse and IP 

corresponds to Instruction Pre-computation. Figure shows two main results: First, Instruction Pre-computation 

outperforms value reuse for almost all benchmarks and table sizes. Second, for smaller table sizes, which are less 

expensive in terms of area and cycle time,  instruction pre-computation has non-trivial speedups (4.1% for 16-bit entry) 

while value reuse has a much smaller speedup(1.7% for 16-bit entry). 

Finally, instruction pre-computation produces speedups that are almost always higher than the speedups produced by 

value reuse for same table size. Instruction pre-computation has lower area cost and lower access time. Instruction pre-

computation can easily use the instruction’s execution latency to determine the unique computations that could yield the 

most performance difference. This is beneficial for multimedia applications. 

Instruction pre-computation is effective for small table sizes due to its profiling step. For small pre-computation table, it 

produces average speedups of 4.1% in terms frequency and 4.4% in terms of F/LP for the same program. 

 

 

C. Micro-threading 

 

Most microprocessors use out-of-order execution techniques. This allows superscalar processors to extract high levels 

of ILP. But the most significant problem with this approach is a large instruction window and logic to support 

instruction issue from it. The Micro-threaded model avoids the complexity in instruction issue and eliminates 

speculative execution. The model is based on decomposing a sequential program into small fragments of code called 

micro-threads. These micro-threads are scheduled dynamically and can communicate and synchronise with each other 

efficiently. This process allows sequential code to   be compiled for execution on a scalable chip multiprocessor. As the 

code is schedule invariant, the same code will execute on any number of processors limited only by problem size.  

 

The block diagram of a micro-threaded chip multiprocessor is shown in the figure 5. N micro-threaded pipelines are 

connected to these two shared communications systems. The first is the broadcast bus, used for creating threads and 

distributing invariants. The second is the shared-register ring network used to perform communication between the 

register files in the producer and consumer threads.  
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Fig 5: Micro-threaded CMP Architecture (Ref 3) 

This model exploits Instruction Level Parallelism within basic blocks and across loop bodies. Micro-threading approach 

also supports a pre-fetching mechanism that avoids many instruction cache misses in the pipeline. 

 

Conclusions 

 

Each technique used to increase Instruction Level Parallelism has its own advantages as well as disadvantages. Balanced 

scheduling with compiler optimization has 10% advantageous than traditional schedulers. Balanced scheduling with 

compiler optimization produces average speedups that range from 1.15 to 1.40.  It is more advantageous if more 

instruction level parallelism is available. Instruction Pre-computation produces speedups of 1.6% to 45.5%, with an 

average speed up of 11.0%.Inaddition to its superior performance; instruction pre-computation also comes up with less 

area and has lower access time. Instruction Pre-computation is beneficial for multimedia application. But Instruction Pre-

computation is only effective for small table sizes due to its profiling step. In micro-threading, the micro-threads 

(fragments) capture Instruction Level Parallelism and loop concurrency. These fragments can be interleaved to single 

processor or distributed to multiple processors to achieve speedup. Hence it find useful in Chip Multiprocessors. 

Therefore micro-threaded CMP based on a fully distributed and scalable register file organization and asynchronous 

global communication buses is a good candidate for future Chip Multiprocessor. 
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