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Abstract: This paper presents comparison of the time specification performance between two controllers for an
inverted pendulum system. The objective is to determine the control strategy that delivers better performance
with respect to pendulum's angle and cart's position. The inverted pendulum represents a challenging control
problem, which continually moves toward an uncontrolled state. The problem is to balance a pole on a mobile
platform that can move in only two directions, to the left or to the right. A Linear-Quadratic-Regulator (LQR)
and a pole placement technique for controlling the linearized system of inverted pendulum model are presented
and compared. Simulation studies conducted in MATLAB environment show that both the controllers are
capable of controlling the multi output inverted pendulum system successfully. The result shows that pole
placement technique gives better response compared to LQR control strategies.
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|. Introduction

An Inverted Pendulum System (IPS) is one of the most well known equipment in the field of control systems theory. It
is inexpensive and can be easily built and installed in laboratories for control education purposes or for research
applications. The inverted pendulum system is a nonlinear problem, which has been considered by many researchers,
most of which have used linearization theory in their control schemes. In general, the control of this system by classical
methods is a difficult task This is mainly because this is a nonlinear problem with two degrees of freedom (i.e. the
angle of the inverted pendulum and the position of the cart), and only one control input [3].Inverted Pendulum is a very
good model for the attitude control of a space booster rocket and a satellite, an automatic aircraft landing system,
aircraft stabilization in the turbulent air-flow, stabilization of a cabin in a ship etc. To solve such problem with non-
linear time variant system, there are alternatives such as real time computer simulation of these equations or
linearization. However, it also has its own deficiency due to its principles, highly non-linear and open loop unstable
system; causing the pendulum to fall over quickly whenever the system is simulated due to the failure of standard linear
techniques to model the non-linear dynamics of the system [1].The common control approaches such as the linear
quadratic regulator (LQR) control and pole placement technique. To overcome the problem of this system requires a
good knowledge of the system and accurate tuning to obtain good performance [2]. This paper presents investigations
of performance comparison between modem control (LQR) and pole placement technique for an inverted pendulum
system. Performance of both control strategies with respect to pendulum’s angle and cart's position is examined.
Comparative assessment of both control schemes to the system performance is presented and discussed.

I1. Problem Statement

a- To model the Inverted Pendulum system and linearizing the model for the operating range.
b- Todesign LQR and a pole placement controller for the linearized system under consideration.
c- To make comparison between the proposed controllers.

Page | 392



International Journal of Enhanced Research in Science Technology & Engineering, ISSN: 2319-7463
Vol. 3 Issue 6, June-2014, pp: (392-400), Impact Factor: 1.252, Available online at: www.erpublications.com

I11. System Description

This section provides the modeling of the inverted pendulum system, as a basis of a simulation environment for
development and evaluation of both control schemes. The system consists of an inverted pole with mass, m, hinged by
an angle © from vertical axis on a cart with mass, M, which is free to move in the x direction as shown in Figure.1. A
force, F is required to push the cart horizontally. In order to obtain the dynamic model of the system, the following
assumptions have been made:[3]
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Figure 1. Inverted pendulum system
a) The system starts in a state of equilibrium meaning that the initial conditions are therefore assumed to be zero.
b) The pendulum does not move more than a few degrees away from the vertical to satisfy a linear model.
C)A step input is applied. The parameters of the system are given in Table 1.

Table 1. Parameters of The System

Symbol Parameter Value Unit
M Mass of the cart 0.5 kg
m Mass of the pendulum 0.2 kg
B Friction of the cart 0.1 N/m/s
L Length of the pendulum 0.3 m
I Inertia of the pendulum 0.006 Kgm?2
g Gravity 9.8 m/s2

Figure. 2 shows the free body diagram of inverted pendulum system. From the free body diagram, the following

dynamic equation of the system is determined:[3]

(M +m)%X+bx+mlécosd—ml&?sin€ = F
(1 + ml?)& + mglsin & =—mlx cos &

Both the controllers can only work with linear functions so this set of equations should be linearized about © = n. After
linearization, above two equations of motion reduce to the following, (where u represents the input):

(I +ml?)é —mglg = mlx

(M +m) X +bx—mlg =u

The dynamic equations (3) and (4) can be represented in state space form as stated below:

xt)] [0 1 0 0 x(t) 0

X(t)| |0 —0.1818 2.6727 0| x(t) 1.8182
dt o o o 1llsm| | o 1o
)| |0 —0.4545 31.1818 O || 4(t) 4.5455
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Figure 2. Free body diagrams of the inverted pendulum.[3]
V. Design of Controllers

In this section, an LQR and a pole placement controllers are presented to control the system under consideration. These
controllers work on linearized model of the system.

A. LOQR Controller

LOR is a control scheme that provides the best possible performance with respect to some given measure of
performance. LQR is a method in modern control theory that uses state-space approach to analyze such a system. Using
state-space methods it is relatively simple to work with a multi-output system [6]. Figure 3 shows the full state
feedback representation of Inverted pendulum system. The LQR controller is designed using MATLAB. [1]
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Figure 3. Full-state feedback controller with reference input for the inverted pendulum system.
In this problem, R represents the commanded step input to the cart. The four states, (X ,X ,68 ,0 ) represent the

position and velocity of the cart and the angle and angular velocity of the pendulum. The output y contains both the
position of the cart and the angle of the pendulum.. A controller will be designed so that when a step input is given to
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the system, the pendulum should be displaced, but eventually return to zero (i.e. the vertical) and the cart should move
to its new commanded position. [6]
The state and output matrix equations describing the inverted pendulum can be written as the following equation.[5]

X(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t) 7

And that all of the four states are available for the controller. The feedback gain is a matrix K of the optimal control
vector

K=[K, K, K; K,] 8
u(t) =-Kx(t)
So as to minimize the performance index

Jz_[(xTQx+uTRu) dt 9
0

Where Q is state-cost matrix and R is performance index matrix..For designing LQR controller, the value of the
feedback gain matrix, K, must be determined. Figure 4 shown how to determine the values of K.[5]

AB — Modern control system K
C =
p /—/—/—— Design Package MATLAB —
[ ——
Q F0/—— [k]=lgr(A,B,Q,R)
 ———

Figure 4. Determine the values of matrix K.
B. Pole Placement Controller Design
In pole placement we aim to place the poles of the closed loop transfer function in reasonable positions. A full state
feedback controller based on the pole assignment method can improve the system characteristics such that the closed
loop system performance will satisfy the requirement criteria.Figure.6shows the block diagram for the Pole-placement
controller. [4]
Algorithm
For a given system:

X=AX+BU---- (10)

Where,

xRV is the state vector

uR” is the input vector

ARN N is the basis matrix

BR"" is the input matrix

The control law for the Pole-placement controller is given as
u® =-Kx®) - (11)

where, K is the state feedback gain matrix.

Then the closed loop state equation can be obtained as
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%=(A—BK)x - (12)

This state equation describes the system formed by combining the plant and the controller. It is a homogeneous state
equation, which has no input. The solution of this state is given by:

x(t) ="t x(0)

The state feedback controller u(t)=-K x(t) drives the state to zero for arbitrary initial conditions, provided that the
closed loop poles -—the Eigen values (A— BK) of --all have negative real parts. By setting pole locations, we can
make the closed loop system not only stable but also satisfy a given set of transient specifications.

A state feedback gain K that yields the closed loop poles {p1,p2,p3 ----- pn,}is obtained by solving the equation
det (sI-A+BK) = (s-p1) (s-p2)--------- (s-pny) ----- (14)

For designing pole placement controller, the value of the feedback gain matrix, K, must be determined. The following
block is shown how to determine the values of K.

A ~ Modern control system
B K
c &=————  Design Package MATLAB |
D T/ ——
P — — K = place(A,B,P) ‘
) —

Figure 5. Determine the values of matrix K.

The selection of closed loop system Eigenvalues needs an understanding of the system characteristics and the limitation
of the actuator. Different pole locations determine different system performance. This is the critical part of the
controller design. By comparing the system performance in simulation, we can select the suitable pole locations.[4]

X(t) +
REQ)
aroe

#(t)

Figure 6: Block diagram for Pole-placement controller.

V. Simulation and Results

The system under consideration and the proposed controllers are modeled and simulated in the MATLAB/Simulink
environment. The step response performance of the two controllers is compared. Figure.7shows the Impulse response

of the system under consideration in absence of a controller and is found to be unstable. The open loop poles is shown
in Table 1.1

Open loop poles 0] -5.6041 -0.1428 5.5651

Table 1.1 Open loop poles
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Figure 7 Open loop response for pendulum angle and cart’s position using state-space

Figure.8 shows the step response of pendulum angle and cart position by using LQR controller.

Step response with LQR control
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Figure 8. Step response of pendulum angle and cart position with LQR controller.

4400 0 0 O
The LQR controll ters are Q 0 000 [1]
e controller parameters are Y = R =
0 0 5 0
0 0 0 O

The elements of gain matrix K obtained by LQR method are.

K =[-66.3325 -35.6882 100.4177 19.9371]

The closed loop poles are.

[-8.1092 + 7.5930i-8.1092 - 7.5930i-4.8495 + 0.6516i-4.8495 - 0.6516i]
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Figure.9 shows the step response of pendulum angle and cart position by using pole placement controller.

Response of the plant with Pole Placement control
0.015 T T T T T T T

Position[m]
Pebdulum Angle[rad] ||

0.01

0.005

-0.005

-0.01

Position[m],Pebdulum Angle[rad]

-0.015

-0.02 | | | | | | | | |
0 0.5 1 -5 2 25 3 3.5 4 4.5 5

Time [s]

Figure 9. Step response of pendulum angle and cart position with pole placement controller.

The elements of gain matrix K obtained by pole placement controller are.
K=[-65.9860 -32.0726 93.6270 18.3022]
The closed loop poles are [-5.53 +2i -5.53— 2i -7+ 6i -7-61i ]

Figure.10.shows the step response of cart position using LQR and pole placement controllers

X 10'3 Response of the plant withLQR and Pole Placement control
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Figure 10. Comparison of step responses for cart position

Figure.11 shows the step response of pendulum angle using LQR and pole placement controllers
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Step response with LQR and pole placement controller
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Figure 11. Comparison of step responses for pendulum angle

The time response specifications for the system under consideration equipped with the proposed controllers are given in
Tables 2 and 3.

Table 2. Summary Of The Performance Characteristics ForCart Position.

Time response LOR Pole placement
specifications
Settling Time T, 0.989 s 0.936's
Rise Time T, 0.405s 0.276 s
Peak amplitude -0.0151 -0.151
Steady state error eg, 0 0

Table 3. Summary Of The Performance Characteristics For pendulum angle.

Time response LOR Pole placement
specifications
Settling Time T, 15s 1.29s
Peak amplitude 0.012 0.043
Steady state error e 0 0

The results show that both the controllers have been successfully designed but the pole placement controller exhibits
better response and performance.

Conclusion

In this paper, an LQR and a pole placement controllers are successfully designed for the inverted pendulum system.
Based on the results, it is concluded that both the control methods are capable of controlling the inverted pendulum's
angle and the cart's position of the linearized system. However, the simulation results show that pole placement
controller has a better performance as compared to the LQR controller in controlling the inverted pendulum system.
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