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Abstract: One of the demerits of FLC (fuzzy logic controller) is disability in self-tuning which contribute to 

contingent on knowledge of experts or expert systems. In most cases, tries and errors methodology is used to 

tune up FLC that could be so time-consuming and may be could not lead to best response. Whereas, meta-

heuristic algorithms such as Cuckoo Optimization Algorithm (COA) and Particle Swarm Optimization (PSO) 

could identify the almost optimum parameters of FLC. COA fuzzy controller is one of the most effective 

methods in term of conditions which designing FLC on account of insufficient expert knowledge is so 

problematic. There are several controllers approach to this demand but in this paper with the help of COA, a 

powerful method for tuning fuzzy logic controller is considered and applied for controlling a steam condenser 

plant. Finally a comparative study between COA-Fuzzy, PSO-Fuzzy and PID controllers is demonstrated to 

verify the performance of proposed method. 
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1. Introduction 

Cuckoo optimization algorithm (COA) is one the recently introduced metaheuristic algorithm. The operation of this 

algorithm inspired by the spectacular life style of a bird which is called Cuckoo. These birds family have a special 

lifestyle in terms of egg laying and breeding. As a result, Cuckoo Optimization Algorithm aims to utilize these special 

characteristics for solving optimization problems. The basis of this algorithm is the same as other swarm intelligence 

algorithms. Like other algorithms, COA begins its calculations with initial birds and their own eggs. Each initial cuckoo 

aims to survive in the society and this is the main point of inspiration for COA. According to some predefined factors, 

each environment has a profit value. Each Cuckoo has to move toward the better environments to be alive and let their 

eggs breeds. It is obvious that, in this process some Cuckoos or eggs will be demised and in each step of this process, 

the number of Cuckoos in total population is being decreased. This procedure continues until hopefully there is only 

one society where all Cuckoos live there [1]. Utilizing the optimization methods to synthesis the self-tuned fuzzy 
systems has been so widespread in the last few years. Online tuning algorithm is the most important part of such 

systems [2] [3] [4].  

The gradient descent algorithm [5] and genetic algorithm (GA) [6] [7] [8] [9] [10] [11] have been the base point of view 

for the learning process. Simulated annealing (SA) [12] [13] [14] is yet another choice for solving optimization 

problems. However, it has seldom gained interest of researchers for learning method and tuning of fuzzy systems. 

Particle Swarm Optimization (PSO) is the other way for optimizing FLC which is introduced later than the others [15] 

[16] [17][18]. The ability of COA to finding the best optimal answer, fast convergence, and simplicity in determining 

the best algorithm parameters and to deal with any type of cost function with huge number of optimization parameters, 

makes it a better tool than the classical gradient descent algorithm, GA and PSO. The COA fuzzy system is examined 

by a plant which is a steam condenser pressure control system.  

 
Pressure control in condensers is so common and practical in all industrial fields such as oil and gas industries. There 

are several different methods to meet this demand as can be demonstrated by for instance PID controller, FLC, and the 

likes. Fundamentally, pressure control is one of most nonlinear processes in control knowledge and in this paper; this 

parameter in a steam condenser with minimum overshoot, steady state error and other important parameters in output 

response is controlled. To put it in other way, typical controller could not tackle this failure. On this condition, one of 

the best and acceptable methods is COA fuzzy controller. That is why; there is insufficient expert knowledge to tune up 

FLC. The COA organizes expert knowledge and tunes it up. There are several methods to tune up all or some 

parameters of FLC like input membership functions, output membership functions and inference rule base. On this 

paper, the COA tunes up input and output membership functions for achieving to the best performance. In subsequent 

sections, details of COA fuzzy system, plant, and disturbance are identified and responses is comprised with ordinary 

FLC. 
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2. Cuckoo Optimization Algorithm (COA) 

In as much as the COA is published recently, brief introduction with COA seems inescapable. Figure 1 depicts 

flowchart of COA. 

 

Similar to other evolutionary methods, COA begins with an initial population. These initial populations consist of some 

cuckoos which have their own eggs. Cuckoos lay these eggs in another birds' nests. These nests are called host nests. 
Merely some of these eggs, which are more similar to the host birds' eggs, have the opportunity to grow up. Otherwise, 

eggs will be detected by host bird and will be throw away from nest. That is, they will not become a mature Cuckoo. 

The number of grown eggs is an index for the suitability of the nests for egg laying in that area. As mentioned before, 

each area has its own profit value. The more profit value has a direct link with more eggs survival rate in that area. 

Hence, the narrowed area in which more eggs survive will be the parameter that COA is going to optimize. Each 

Cuckoo searches for the area with the most profit value to lay eggs in and in order to maximize their eggs survival 

chance. After survived eggs grow and became a mature cuckoo themselves, they make some new societies. The best 

habitat of all societies will be the destination for the cuckoos amongst other societies. It is remarkable that each Cuckoo 

has its own egg laying radius parameter. This parameter is being defined according to the number of eggs each cuckoo 

has and also the cuckoo‟s distance to the goal point. Then they immigrate toward this goal point and they will inhabit 

somewhere near this point. Cuckoo starts to lay eggs again in some random nests which are inside her egg laying 

radius. This process continues until the best are with maximum profit value is being defined. For further details please 
refer to [1]. 

 

Utilizing COA algorithm to optimize a Sugeno type fuzzy controller has been proposed in [23].  They have proposed an 

optimized controller for a water tank level control system. Their approach was tuning merely triangle shaped output 

membership functions of a Sugeno type fuzzy controller with six optimization parameters. However, a tank liquid level 

can be controlled by merely a well-tuned PID controller and utilizing a fuzzy controller is not vital. In this paper we 

proposed a fuzzy controller which fully tuned by COA. That is, both input membership functions and output 

membership functions with totally 17 optimization parameters have tuned by COA. A steam condenser pressure control 

selected because of its well-known complexity and most of the time unfeasibility in controlling with classical controller 

such as PID controllers. 

 
Fig.1 Flowchart of Cuckoo Optimization Algorithm 
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3. Control process of steam condenser 

Steam condensers are so common and practical in all industries such as oil and gas industries. Generally, a lot of 

parameters in a steam condenser impact on condenser output pressure. In this paper, a dynamic model of steam 

condenser based on energy balance and cooling water mass balance is utilized, which is shown in figure 2 [19]. As can 

be seen in this model, there are three input parameters in steam condenser plant. The first input is steam flow rate (FS), 

the second input is cooling water inlet temperature and finally the third input is cooling water flow rate. Moreover, 

Output parameter is condenser pressure that is measured by a pressure sensor. In the utilized model of steam condenser, 

steam flow rate (Fs) is assumed 4 Kg/Sec and cooling water inlet temperature is 60° C and the cooling water flow rate 

effects output pressure. 

 

Fig. 2 Simulink model of steam condenser 

4. Characteristics of utilized FLC 

There are two inputs and one output for FLC that are error signal, derivative of error signal and cooling water flow rate 

command respectively. Reference signal is a step signal that changes from 90 to 86 KPa. The closed-loop model with 

pressure, P controlled by proposed COA-FLC is shown in figure 3. 

 
Fig.3 Simulink model of COA-Fuzzy controller. 

In term of rule base, 4 rules is intended which is mentioned as follow.  
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1. If (error is high) and (error derivate is low) then (out is low).  

2. If (error is low) and (error derivate is low) then (out is high).  

3. If (error is medium) and (error derivate is low) then (out is low)  

4. If (error is high) and (error derivate is low), then (out is very high). 

The inputs are termed “error” and “d-error” respectively. Range of “error” input is between -3.5 to 5 and center of “el”, 

“em”, and “eh” memberships are situated in –3.5, 0.75, and 5. As well as range of “d-error” input is between 0.4 to 413 

and center of „del‟, „dem‟, and „deh‟ memberships are set in 0, 2.213, and 4.413. Indeed, COA tunes up the Gaussian 

membership functions spreads and all parameters of triangle membership function of output. Then, in this section, there 

are 6 parameters for optimizing. Apparently, for faster designing FLC by COA, some limits must be considered, 

therefore the number of membership functions of output is limited up to five. It should not be forgotten that such as 

these limitations must not have adverse effect on achieving the best performance. The name of FLC output is „out‟ and 

its range is between -20 to 55. Center of first and last membership functions is located in -20 and 55 respectively and 

the center of each membership function must be before next ones. Moreover, their type is triangular-shaped. The COA 

undertakes responsibility of tuning positions of other points of triangulars. It creates 11 parameters for optimizing.  

Regarding to other specifications of FLC, inference engine is product inference engine, fuzzification is singleton, 

defuzzification is center average or centroid defuzzifier, aggregation is maximum, implication is product, or method is 

probabilistic or, and method is product [20]. The FLC is designed by Matlab [21]. The key part of designing FLC on 

this paper is designing output membership functions. Due to insufficient expert knowledge, designing this section is 

dedicated to The COA. To put it another way, the COA designs the FLC output and input membership functions in 

order to better response. On next section, method of this task is discussed. 

5. Cost function, and COA Parameters 

It is taken for granted, each cuckoo position is equal to one style of input and output membership functions and could 

be attributed to one system performance. In other words, finding the best cuckoo position that yields the best 

performance is the target of this paper. In fact, features of condenser pressure response could be as cost function. The 

criteria for evaluating cost function are rise time (Rt), settling time (St), maximum of overshoot (Mo), maximum of 

undershoot (Mu), and Steady State Error (Ess) of condenser pressure response [22]. It is illustrated in equation (1) and 

the aim is finding cuckoo position with minimum cost function. This is to say that some weight is intended to each 

characteristic for changing the influence of each of them. 

Cost Function = W1Rt + W2St + W3Mo + W4Mu + W5Ess                                                               (1)    

To achieve details regarding COA parameters please refer [1]. The parameters of COA and PSO are mentioned in table 

1 and table 2 respectively. 

Table 1. COA Parameters. 

 

COA Parameters Value 

Optimization variables 17 

Initial population 50 

Minimum number of eggs laying 2 

Maximum number of eggs laying 9 

Maximum iterations 100 

Number of clusters 2 

Lambda variable 1 

Accuracy 25 

Maximum number of cuckoos 100 

Parameter of egg laying 1 

Population variance  
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Table 2.  PSO Parameters. 

 

PSO Parameters Value 

Optimization variables 17 

Swarm size 20 

Personal learning coefficient (C1) 2.05*(2/4.1-  

Global learning coefficient (C2) 2.05*(2/4.1-  

 

 

Fig.4 Membership functions of output designed by COA. 

 

 
 

 
Fig.5 Membership functions of input designed by COA. 
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Fig.6 Membership functions of output designed by PSO. 

 
 

 
Fig.7 Membership functions of input designed by PSO. 

6. Results 

The COA and PSO were run 50 times and following results repeat more than others. Style of designed output 

membership functions that is associated with the best cuckoo position is represented in figure 4. Figure 5 depicts style 

of designed input membership functions that is related with the best cuckoo position. Fig 6 and 7 also depict the 

membership functions of outputs and input of FLC tuned by PSO respectively. The input and output membership 

functions parameters of FLC tuned by COA are mentioned in table3. Comparative results of condenser pressure 

responses for three controllers including COA-Fuzzy, PSO-Fuzzy and PID controllers is showed in figure 8. In this 

response weights are W1=1, W2=1, W3=1, W4=1, W5=5.  The COA could tune up FLC parameters promptly within 

25 iterations. As can be seen in this Figure, COA-Fuzzy controller has the best performance in terms of overshoots and 

steady state error. Furthermore, Figure 9 illustrates amount of cost function in each iteration. 
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            Fig.8 Condenser pressure response of different controller. 
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Fig.  9  COA iterations. 

 

 

 
Fig.10 Membership functions of two inputs designed by an expert. 
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Fig.11 Membership functions of output designed by an expert. 

Table 3. Input and output membership functions parameters of FLC tuned by COA. 
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To assess COA fuzzy controller with ordinary FLC, response of ordinary FLC is represented in figure 12. The input and 

output membership functions of ordinary FLC that is designed by an expert is like figure 10 and 11. 
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As can be seen ordinary FLC response has an enormous steady state error and an unavoidable overshoot. Despite the 

fact that COA fuzzy controller response to a great extent has been resolved steady state error and overshoot failures. 
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Fig.12 Condenser pressure response of ordinary FLC. 

7. Conclusion 

One of demerits of FLC is disability in self-tuning which contribute to contingent on knowledge of experts or expert 

system. Meta-heuristic algorithms such as cuckoo optimization algorithm (COA) and Particle Swarm Optimization 

(PSO) could identify the almost optimum parameters of FLC that tuning output membership functions for achieving to 

the best performance. 

COA-Fuzzy controller is one of the most effective methods in term of conditions that designing FLC is so problematic. 

In this paper, COA Fuzzy controller controls steam condenser pressure with high accuracy in ESS. Comparative result 

approve that COA Fuzzy has superior performance than ordinary FLC and traditional controllers such as PID and PSO 

Fuzzy controllers. In the final analysis, the COA could demonstrate its capability to tune up FLC parameters promptly 

with uppermost level of accuracy. 
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