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ABSTRACT 

 

The Fractional Fourier Transform (FrFT) performs better interference suppression than the fast Fourier 

Transform (FFT) when the signal-of-interest (SOI) or interference is nonstationary. Minimum mean-square 

error (MMSE) based filtering in the FrFT domain provides additional benefit in interference suppression in 

non-stationary environments. However, MMSE filtering requires computational covariance matrix inversion. 

Furthermore, non-stationary environments require fewer samples than needed to form the covariance matrix or 

to invoke most reduced rank techniques. Hence, MMSE-FrFT filtering results in errors. In this paper, we 

propose to apply the correlations subtraction architecture of the multistage Wiener filter (CSA-MWF) in the 

FrFT domain to overcome these problems. We compare the proposed MWF-FrFT algorithm to the MMSE-

FrFT algorithm and to the conventional MMSE-FFT algorithm by simulation. Using a BPSK signal in chirp 

noise and Gaussian pulse interference as examples, we show bit error rates (BERs) with 2 − 4 dB less Eb/N0 and 

just N = 4 samples per block. 

 

Keywords: Adaptive Filtering, Fractional Fourier Transform, Minimum Mean-Square Error, Multistage 

Wiener Filter. 

 

  

 

1. INTRODUCTION 

 
The Fractional Fourier Transform (FrFT) has a wide range of applications in the fields of optics, quantum mechanics, 
image processing, and communications. Also, its properties, as well as its relationship to other analysis methods such as 
the Wigner distribution ([7] and [8]) and the wavelet transform [10] are well understood. Specifically, it is a useful signal 
processing tool for separating a signal-of-interest (SOI) from interference and/or noise when the statistics of either are 
nonstationary, as is often the case [11]. The FrFT enables us to translate the received signal to an axis in the time-
frequency plane where the SOI and interference may be separable, when they are not separable in the time domain or the 
frequency domain as provided by the conventional fast Fourier Transform (FFT). 

The FrFT of a function f(x) of order a is defined as [11] 

 

 

       (1) 

 

where the kernel Ba(x,x′) is defined as 

 

 

(2) 

 

 = aπ/2, and . This applies to the range 0 < || < π, or 0 < |a| < 2. In discrete time, we can model the N 

× 1 FrFT of an N × 1 vector x as , 
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(3) 

where F
a
 is an N × N matrix whose elements are given by ([2] and [11]) 

 

 

(4) 

 

where uk[m] and uk[n] are the eigenvectors of the matrix S 
defined by [2] 

 

 

 

(5) 

 

 

 

and 

 

(6) 

 

An MMSE-FrFT solution for estimating an SOI in the presence of non-stationary interference and noise in the FrFT 

domain has been developed which does not rely on knowledge of the nature of the interfering signal or noise [14]. 

When the environment is non-stationary, it is necessary to perform this estimation with very few samples, i.e. before the 

statistics of the received signal change. If the number of samples used is large, then estimation errors occur. MMSE-

based algorithms, however, are known to require a large number of samples in practice, which limits their performance 

in nonstationary scenarios [12]. In addition, any MMSE-based solution requires inversion of a covariance matrix, which 

is a computationally complex operation that limits its ability to perform in real-time [15]. In this paper, we implement a 

reduced rank version of the MMSE-FrFT solution using the well-known correlations subtraction architecture of the 

multistage Wiener filter (CSA-MWF) to improve performance and operate more efficiently in non-stationary 

environments. The computational savings of the CSA-MWF has already been documented in the literature, so we will 
not discuss that here (for example, see [15]). 

 

An outline of the paper is as follows: Section 2 describes the adaptive filtering problem, now in the Fractional Fourier 

Transform (FrFT) domain. Section 3 presents the full rank minimum mean-square error (MMSE) solution in the FrFT 

domain proposed in [14] and the conventional MMSE-based FFT solution, termed MMSE-FrFT and MMSE-FFT, 

respectively. Section 4 describes the proposed reduced rank solution using a multistage Wiener filter (MWF) in the 

FrFT domain, called MWF-FrFT. Section 5 presents simulation results to show that both the MMSE-FrFT and MWF-

FrFT provide performance improvement in estimating signals in noise vs. the conventional MMSE-FFT based 

technique, thus showing the benefit of the FrFT. Furthermore, we show that the MWF-FrFT improves upon the MMSE-

FrFT, thus showing the performance benefit of rank reduction. Finally, conclusions and remarks on future work are 

given in Section 6. 

 

2. PROBLEM FORMULATION 

 

Without loss of generality, we consider a digital binary sequence whose elements are in (−1,+1) that we would like to 

estimate in the presence of non-stationary interference and non-stationary noise. Here, we ignore the carrier, and hence 

model the SOI as a baseband binary phase shift keying (BPSK) signal. The number of bits per block is denoted N1, and 

if we oversample each bit by a factor of SPB (samples per bit), the number of samples per block in the BPSK signal is N 
= N1SPB, and the signal is denoted in vector form as the N ×1 vector x1(i). The SOI x1(i) is corrupted by a non-

stationary interferer x2(i) and a non-stationary noise signal x3(i), both of which we describe in Section 5, and by an 

additive white Gaussian noise signal n(i). Here, index i denotes the ith block, where i = 1,2,,M, and M is the total number 

of blocks that we process. The received signal y(i) is then, 

 

y(i) = x1(i) + x2(i) + x3(i) + n(i).     (7) 

 

We obtain an estimate of the transmitted signal x1(i), denoted   1(i), by first transforming the received signal to the 

FrFT domain, applying an adaptive filter, and taking the inverse FrFT.  This is written as [14] 

(8) 
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where Fa and F−a are the N × N FrFT and inverse FrFT matrices of order ‘a’, respectively, and 

g = diag(G) = (g0,g1,…,gN−1)     (9) 

is an N ×1 set of optimum filter coefficients to be found such that the mean-square error between the desired signal 

x1(i) and its estimate   1(i) is minimized. That is, we minimize 

                                             ,                       (10) 

The notation diag(G) = (g0,g1,…,gN−1) means that matrix G has the scalar coefficients g0, g1, ...,, gN−1 as its diagonal 

elements, with all other elements equal to zero. 

3. FULL RANK MMSE-FRFT SOLUTION 

 

It is well known that the optimum set of filter coefficients g0 that minimizes the cost function in Eq. (10) can be obtained 

by setting the partial derivative of the cost function to zero [14]. That is, compute g0 such that 

 
                  

                                                                                                 (11) 

This is the MMSE-FrFT solution, given by [14] 

 

                             (12) 

 

where 

 

                 (13) 

 

 

                 (14) 
                                 

                   

                 (15) 

 

   (16) 
and 

                (17) 

  

Note that the LMS-FrFT solution presented in [9] will perform comparably to the MMSE-FrFT algorithm over time, 

hence we do not include it in our simulations. Note also that the MMSE-FFT solution is obtained simply by setting a = 1 

in calculating g0 from Eqs. (12)−(17). This solution simply becomes one of applying the optimum filter given by Eq. (12) 

in the frequency domain, since F1 reduces to an FFT and F−1 is an inverse FFT (IFFT). In other words, 

               

    (18) 

 

4. PROPOSED REDUCED RANK MWF-FRFT SOLUTION 

 
The full rank solution implemented in Eq. (12) can be implemented efficiently using the correlations subtraction 

architecture of the multistage Wiener filter (CSA-MWF). The MWF was first introduced in [3] − [6] and it offers the 

advantages that it often exceeds MMSE performance without any computationally complex matrix inversion or eigen-

decompositions, and we show here that these advantages exist in the FrFT domain as well. The efficient CSA 

implementation of the MWF was first presented in [13]. The recursion equations for the CSA-MWF are shown in Table 

1. Rank reduction is achieved because we can set D < N. We initialize the filter in the conventional way, except that we 

transform all the variables to the FrFT domain first. So, we let 

 

                                 (19) 

and 

 
      (20) 
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The CSA-MWF computes the D scalar weights wj, j = 1,2,...,D, from which we form the optimum filter 

   (21) 

 

Table 1:  Recursion Equations for the CSA-MWF 

 

 
 

5. SIMULATIONS 
 

We present simulation examples to compare the performance of the three adaptive filtering techniques: MMSE-FrFT, 
MMSE-FFT, and MWF-FrFT and demonstrate the performance benefits of the MWF-FrFT method. We compute the 
filter coefficients using Eqs. (12), (18), and (21), respectively, and then apply them to Eq. (8) to compute the bit 
estimates. These are compared to the true bit to determine if an error occurs, so we can compute a bit error rate (BER). In 
the first example we assume there is no interfering signal, so that x2 = 0. The desired BPSK signal is corrupted by a non-
stationary chirp noise signal given in vector form by (see Example 3 in [7]) 

      (22) 

 

where fs is an arbitrary sampling rate and we have dropped the block index i for convenience. We let CIR3, the ratio of 

the desired signal power to the chirp noise signal power be −5 dB. Hence, the chirp noise is much stronger than the 

desired signal. Here, due to the non-stationarity of the interference, we choose a very small block size for best 

performance, so we let N1 = 2, SPB = 2, and therefore N = 4. We let the rank of the MWF-FrFT algorithm be D = 1, 

since there is only a single desired signal and we have a training sequence. The performance is not very sensitive to 

rank, so we choose D = 1 for faster implementation. Since the sample size (N = 4) is so small, the choice of rank is 1 < 

D < 4. AWGN is also present, and we plot the BER as a function of Eb/N0 in Fig. 1. At low Eb/N0, all three techniques 

perform comparably, since the techniques are not designed to handle (stationary) AWGN. However, at high Eb/N0, we 
see that the MWF-FrFT technique provides about 1 − 2 dB performance improvement over the MMSE-FrFT method, 

which in turn is about 2 − 3 dB better than the conventional MMSE-FFT. Given that MWF-FrFT does not require 

inversion of the covariance matrix Q, there is a computational savings as well. 

 

Some additional noteworthy points follow. First, note that because we are already using such a small sample size (N = 

4 in this case), we cannot apply other rank reduction techniques based on eigen-decomposition, such as principal 

components. Since the full rank is 4, there is not much rank reduction that can be done and hence no benefit to doing 

so. This is the reason we choose to apply only the MWF-FrFT reduced rank method and not any other methods. 

Second, we note that in order to compute the optimum filter coefficients, we need an estimate of the FrFT rotational 

parameter ‘a’. This is done in the conventional way, by computing the value of ‘a’ that provides the best estimate first, 

and then applying the value of ‘a’ over the Monte Carlo trials to compute the BER [7]. Third, we note that the optimum 
value of ‘a’ is not necessarily the same for the MMSE-FrFT and MWF-FrFT techniques and therefore must be 

computed separately for each. The development of techniques for estimating ‘a’ using analytic or other a priori 

methods is the subject of ongoing research. 

 

In the second example, we set the chirp noise to x3 = 0 but we apply an interfering signal x2 which is modeled as a 

Gaussian pulse with random amplitude and phase, that takes the form [14] 

 

            (23) 

 

where A and s are N × 1 vectors of randomly generated amplitudes and phases uniformly distributed in (0.5,1.5). Here 

we let CIR2 = −5 dB. Hence, the interferer is stronger than the desired signal by 5 dB. We again include AWGN so we 

can plot the BER as a function of Eb/N0, shown in Fig. 2.  We see greater improvement in the MWF-FrFT method 
versus the MMSE-FrFT and MMSE-FFT as in the previous example. We also note that both FrFT techniques perform 
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better than in the previous example. This is simply due to the nature of the interference and the ability of the FrFT to 

separate the interfering signal from the desired signal by transforming to the appropriate domain ‘a’. This is also the 

subject of future study, and it is expected that examining the Wigner distribution ([1] and [7]) of different signal types 

will enable a better understanding of which signal types can be more easily separated. 

 

 
Fig. 1. Eb/N0 [dB] vs. BER; BPSK Signal in AWGN; no Interferer (CIR2 = ∞); Chirp Noise (CIR3 = −5 dB) 

 

 
Fig. 2. Eb/N0 [dB] vs. BER; BPSK Signal in AWGN; Gaussian Pulse Interferer (CIR2 = −5 dB); no Chirp 

Noise (CIR3 = ∞ dB) 

 

 
In the third example we apply both the interfering signal x2 and the chirp noise signal x3, plus AWGN. Now we let CIR2 
= −5 dB, and CIR3 = 5 dB. So, again the interferer is much stronger than the desired signal, but the chirp noise is not. We 
again choose a very small block size for best performance, so we let N1 = 2, SPB = 2, and therefore N = 4. We again let 
the rank of the MWF-FrFT algorithm be D = 1. The performance is still not very sensitive to rank. From the BER vs. 
Eb/N0 plot in Fig. 3, we see that the MWF-FrFT algorithm provides up to 3 dB performance improvement over the 
MMSE-FrFT, at reduced complexity. Due to the non-stationary interference and noise which the MMSE-FFT algorithm 
is not designed to handle, it fails to perform well, even as the Eb/N0 is increased. Since now there is also chirp noise 
present, performance degrades compared to the last example, but since CIR3 is fairly reasonable, 5 dB, degradation is less 
than 1 dB. This example demonstrates the robustness of the reduced rank technique. As we decrease CIR3, the 
degradation in performance is graceful. 
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Fig. 3 Eb/N0 [dB] vs. BER; BPSK Signal in AWGN; Gaussian Pulse Interferer (CIR2 = −5 dB); Chirp Noise (CIR3 = 
5 dB) 

 

6. CONCLUSION 
 

In this paper, we study the performance of adaptive filtering algorithms in the Fractional Fourier domain when a desired 
BPSK signal is corrupted by a non-stationary environment. We first apply a Fractional Fourier Transform (FrFT) to the 
signals and then seek the optimum filter coefficients that produce the minimum mean-square error (MMSE) between the 
desired signal and its estimate. We compare the full rank MMSE-FrFT method presented in [14] to a reduced rank 
technique based on the multistage Wiener filter, called MWF-FrFT. We also compare these to the conventional FFT-
based MMSE methods (MMSE-FFT) to show the benefit of the fractional Fourier domain when interference and noise 
are non-stationary, and further show the performance benefit of the reduced rank MWF-FrFT, which has a computational 
benefit also compared to the full rank MMSE-FrFT. We show by simulation that the reduced rank method in the FrFT 
domain reduces the required Eb/N0 by as much as 3 dB in the presence of a chirp interferer and Gaussian pulse noise 
signal, in addition to AWGN. The FrFT rotational parameter ‘a’ is found by simulation first, and future work includes 
researching analytical methods to determine ‘a’ to make these methods more feasible for real-time system 
implementation. 
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