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ABSTRACT 
 

The generalized model error estimators for continuous time and discrete time nonlinear systems are presented. Also, 

H infinity based semi-robust or adaptive estimators are suggested. The model error estimators are primarily based 

on the classical least squares criterion, and then the cost function is extended to include the energy term of 

deterministic discrepancy that is also called model error. The recursive solution to the ensuing two point boundary 

value problem is obtained by the method of invariant embedding (IE). The continuous time generalized IE based 

algorithm is illustrated with a numerical example implemented in MATLAB.         

 

Keyword: Model error, Pontryagin’s conditions, invariant embedding, generalized estimators, adaptive IE 

estimators.  

 

 

 

1. INTRODUCTION 

 

In several real life practical situations accurate identification of nonlinear terms (parameters) in the model of a dynamic 

system is required. Interestingly enough, traditionally used KF/EKF (Kalman filter) cannot determine the deficiency or 

discrepancy in the model of the system used in the filter, since it presupposes availability of accurate statespace model. 

Assume a situation wherein we are given the measurements from a nonlinear dynamic system and we want to determine the 

state estimates. In this case, we use extended KF and we need to have the knowledge of the nonlinear function ‘f’ and ‘h’. 

Any discrepancy in the model will cause model errors that will tend to create mismatch of the estimated states with the true 

states of the system. There might be some problems [1-3]: i) deviation from the Gaussian assumption might degrade the 
performance of the algorithm, and ii) the filtering algorithm is dependent on the covariance matrix P of the state estimation 

error, since this is used for computation of Kalman gain K. These limitations of the KF can be overcome largely by using 

the method based on principle of model error [1-3]. This approach not only estimates the states of the dynamic system from 

its measurements, but also the model discrepancy as a time history. The point is that we can use the known (deficient or 

linear) model in the state estimation procedure, and determine the deterministic discrepancy of the model, using the 

measurements in the model error estimation procedure. Once the discrepancy time history is available, one can fit another 

model to it and estimate its parameters using a regression-LS method. Then combination of the previously used model in the 

state estimation procedure and the new additional model would yield the accurate model of the underlying (nonlinear) 

dynamic system, which has in fact generated the data. 

 

This approach would be very useful in modelling of the large flexible structures, robotics and many aerospace dynamic 
systems, which usually exhibit nonlinear behaviour. Often these systems are linearized leading to approximate linear models 

with useful range of operation but with limited validity at some far away points from the local linearization points. Such 

linear systems can be easily analysed using simple tools of linear system theory. System identification work generally 

restricted to such linear and linearized models can lead to modal analysis of the nonlinear systems. However, the linearized 

models will have limited range of validity for nonlinear practical data, because certain terms are neglected, in the process of 

linearization and approximation. This will produce inaccurate results, and these linearized models will not be able to predict 

certain behavioural aspects of the system, like drift.  

 

The approach presented in this paper, would produce/predict accurate state trajectory, even in the presence of 

deficient/inaccurate model and additionally identify the unknown model (form) as well as its parameters. The method of 

model error essentially results into a batch estimation procedure, because it is a two-step process. However, realtime 
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solution can be obtained using the method of invariant embedding (IE), in conjunction with real time least squares 

estimation method (RLS). The method of IE is discussed for continuous as well as discrete time systems. In essence we 

derive generalizes estimators based on the classical LS criterion and obtain the generalized IE estimators and then specialize 

these for obtaining the conventional IE estimators. Then we upgrade the classical LS criterion with the robust H infinity 

norm based criterion and obtain, from these generalized estimators, the semi-robust estimators. We call these as robust 

because these estimators are based on H infinity norm criteria, and as semi-robust, since these will satisfy only certain 
theoretical condition on the cost function, and may not satisfy the full robustness condition. Hence, we present novel results 

on model error estimation in the joint setting of IE and HI (H infinity), and the generalized IE based estimators, which might 

lead to strictly robust estimators in the joint setting of IE and HI. Performance is illustrated with an example. 

 

2. PHILOSOPHY OF MODEL ERROR AND PONTRYAGIN’S CONDITIONS 

 

Our main aim is to determine the model error, or the so called deterministic discrepancy based on the available noisy 

measurements for a given nonlinear dynamic system; and it is assumed that the experimental/real data are from a nonlinear 

system, however, we fit only a primarily known model that might be deficient, i.e. this postulated model is not true model. 

Let the mathematical description of the nonlinear system be given as 

 

)()),(),(( tdttutxfx            (1) 

 

The un-modelled (not modelled) disturbance is represented by d(t), which is assumed to be piecewise continuous. This is not 

the process noise term as in the/of the KF theory. Hence, like the output error method, this approach cannot as such handle 

the true process noise. However, the aim here is different. In control theory, the term d(t) would represent a control force or 

input, u(t), which is determined using an optimisation method by minimizing the cost function 
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It is assumed that 0)}({ kvE ; )()}()({ kRkvkvE T  , which is assumed to be known. Here, ‘h’ is the measurement 

model. The weighting matrix Q plays an important role as a tuning device for the estimator. One natural way to arrive at Q 

is to choose it such that the equality is satisfied 

 

TkkxhkzkkxhkzkR )]),(ˆ()([)]),(ˆ()([)(          (3) 

 

In (3), R(.) is the postulated covariance matrix of the measurement noise and the right hand side is the measurement 

covariance matrix computed using the difference between the actual measurements and the predicted measurements, 

obtained from the estimator. This equality is called the covariance constraint. The main merit of the present approach is that 

it obtains state estimates in the presence of un-modelled effects as well as accurate estimates of these effects. Except on R, 

no statistical assumptions are required. The criteria used for estimation are based on LS and one can after some 
transformations obtain recursive estimator like KF. In the process, the model itself is improved, since this estimate of the un-

modelled effects can be further modelled and the new model can be obtained: accurate model (of the original system) = 

deficient model + model fitted to the discrepancy (i.e. un-modelled effects). The problem of determination of the model 

error, deficiency or discrepancy is via minimization of the cost functional (2) which gives rise to the so called two point 

boundary value problem (TPBVP) [1-4]. The dynamic system is given  

 

)),(),(( ttutxfx  ; 00 xtx )(          (4) 

 

Then, define a composite performance index as 


ft

t
ff duxttxJ

0

 )),(),(()),((         (5) 

 

In (5), the first term is the cost penalty on the final value of the state )( ftx , and the term (.)  is the cost penalty 

governing the deviation of )(tx  and )(tu  (in general a control input) from their desired timehistories. The aim is to 
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determine this input )(tu , in the interval fttt 0 , such that the performance index J is minimized, subject to the 

constraint of (4), which states that the state should follow integration of (4) with the input thus determined. 

We use the concept of Lagrange multiplier to handle the constraint within the functional J 

 

 
ft

t

T
ffa dxuxfuxttxJ

0

 )])),(),((()),(),(([)),((      (6) 

In (6),   is the Lagrange multiplier and it facilitates the inclusion of the condition (4), which is the constraint on the state of 

the dynamical system, the point is that in the process of determination of )(tu  by minimization of aJ , the condition of (4) 

should not be violated. In the absence of the constraint, the u might be such that the system does not follow the dynamics, 

which otherwise it is supposed to follow/obey. The Lagrange multipliers are known as adjoint variables or co-states. Since, 

in the sequel, we will have to solve the equations for the Lagrange multipliers, simultaneously with those of state equations, 

we prefer to use the ‘co-state’ terminology. If the condition of (4) is strictly satisfied, then essentially (5) and (6) are 

identical and the same, but now the dynamic constraint is taken care. Equation (6) can be rewritten as 

0
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In (7), the last three terms related to  are obtained from the term 
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   of (6) by integrated by parts, and the 

remaining two terms of (6) are clubbed and we get (8) to define it as Hamiltonian. From (7), we obtain, by using the concept 

of differentials 
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From (9), the socalled Pontryagin’s necessary conditions are obtained as 
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Here, 00 )(tx , assuming that the initial conditions )( 0tx  are independent of )(tu . Equation (10) is called the 

transversality condition. In the TPBV problem the boundary condition for state is specified at 0t  and for the co-state,  it is 

specified at ft  (10), then from (8) and (11), we obtain 
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Because of the split boundary conditions, the problem as such is relatively to solve. One method to solve the TPBVP is to 

start with guesstimate on )( 0t  and use )( 0tx  to integrate forward to the final time ft ; then verify the boundary 

condition 
T

ftx
ft







 )( . If the condition is not satisfied, then iterate once again with new )( 0t (or start from the end 

and traverse backward and verify other conditions) and so on until the convergence of the algorithm is obtained. We discuss 

the method of invariant embedding that obtains the recursive solution to the TPBV problem,   

 

3. INVARIANT EMBEDDING APPROACH 

 

In many cases, it is useful to analyse a general process/solution of which our original problem is one particular case [4,5], 

and the method of invariant embedding belongs to this category. It means that the particular solution we are seeking is 
embedded in the general class and after the general solution is obtained, our particular solution can be obtained by using the 

special conditions, which we have kept invariant, in final analysis. Let the resultant equations from the TPBVP be given as 

(1) and (13), in general 

 

)),(),(( tttxx             (15) 

)),(),(( tttx              (16) 

 

We see that the dependencies for   and on )()( ttx  and  arise from the form of (1), (13) and (14), hence, here, we 

have a general TPBVP with associated boundary conditions as: a)(0 and bt f )( . Now, though the terminal 

condition bt f )(  and time are fixed, we consider them as free variables, this makes the problem more general, which 

anyway includes our specific problem. We know from the nature of the TPBVP that the terminal state )( ftx  depends on 

ft and )( ft . Therefore, this dependency can be represented as 

 

)),((),()( ffff ttrtcrtx           (17) 

with ttt ff  , we obtain by neglecting higher order terms 

ccttttt fff  )()()(           (18) 

 

We also get, using (16) in (18) 

ttttxccc fff  )),(),((           (19) 

and therefore, we get 

ttcrc f  ),,(            (20) 

 

Additionally, we get, like (18) 

),()()()( ttccrttxtxttx ffff          (21) 

 

and hence, using (15) in (21), we get 

ttttxtcrttccr fffff  )),(),((),(),(   

       = ttcrtcr ff  ),,(),(         (22) 

 

Using Taylor’s series, we get: 
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Comparing (22) and (23), we get 



International Journal of Enhanced Research in Science, Technology & Engineering 

ISSN: 2319-7463, Vol. 5 Issue 7, July-2016 

 

Page | 81 

ttcrc
c

r
t

t

r
f

f










),,(          (24) 

 

or, using (20) in (24), we obtain 
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Equation (25) simplifies to 
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We see that (26) links the variation of the terminal condition ),()( ff tcrtx   to the state and co-state differential 

functions, (15) and (16), and now in order to find an optimal estimate )(ˆ ftx , we need to determine ),( ftbr  as  

),()(ˆ ff tbrtx             (27) 

 

Equation (26) can be transformed to an initial value problem by using approximation 
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Substituting (28) in (26), we get 
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Next, expanding   and   about ),,ˆ( ftbx  and ),,ˆ( ftbx , we obtain 
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Utilizing expressions of (30) and (31), in (29), we obtain a composite state estimation equation   
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The equation (32) is in essence a sequential state estimation algorithm but a composite one involving x̂ , )( ftS , and c, 

hence it should be separated by substituting the specific expressions for   and  in (32). We can do this when we specify 
the dynamic systems for which we need to obtain the estimators. This we do in next section after arriving at TPBVP for a 

specific problem at hand, and then using (32). 

 

4. GENERALIZED CONTINUOUS TIME ALGORITHM 

 

Let nonlinear dynamic system be represented by 
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We form the generalized cost functional based on the LS principle, and the deterministic discrepancy, i.e. model error 

energy, since we want to estimate the states of the system, and the model error, we assume that we are using only the 

postulated (deficient) model to start with    

0

1[( ( ) ( )) ( ( ) ( ))]  ( ( )  ( ))] 

ft

T T

t

J z t Hx t R z t Hx t d t Q d t dt         (35) 

In (35) d(t) is the model discrepancy to be estimated simultaneously with x(t), and R(t) is the spectral density matrix of noise 

(the covariance). Also, in the second term we have introduced an arbitrary parameter that would generalize the model 

error estimator. We reformulate J by using Lagrange multiplier in order to incorporate the constraint of the system dynamics  
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Comparing with (7) and (8), we get 
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In (37), the first two terms define the function
1( ( ) ( )) ( ( ) ( )) ( ) ( )T Tz t Hx t R z t Hx t d t Qd t     . By utilizing this 

function and the Hamiltonian, and applying the Pontryagin’s conditions, we obtain 
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Thus our two-point boundary value problem is 
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Now comparing with (15) and (16), we obtain 
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and xx f ˆˆ             (45) 

Substituting (42) to (45) in (32) and considering ft  as the running time ‘t’, we obtain 
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We separate terms related to from (46) to obtain  
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Dividing (48) by   and with 0 , we get 

111 1( ) ( ) ( ) 2 ( ) ( )
ˆ ˆ 2

T TS t S t f f S t S t H R HS t Q
x x

             (49) 

 

Wehave the explicit expression for the model error (discrepancy)by comparing (47) to (33) 
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Equations (47), (49) and (50) give the generalized (from the model error point of view) invariant embedding based model 

error estimation algorithm for continuous time system of (33) and (34) in a recursive form. The (49) is often called matrix 

Riccati equation, like the one in Kalman-Bucy filter.In order to implement the estimation algorithm, we need to solve the 

matrix differential (49). We can use the following transformation bSa        

          (51) 

and using (49) 
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We also have bSbSa      and bSabS     . Using  bS   in eqn. (53) and defining b  as in (54), we obtain  
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Equations (54) and (55) can be solved by using the transition matrix method, as is done in the code for the example.We note 

here that Q is the weighting matrix for the model error term. It provides normalization to the second part of the cost function 

(36). 

 

5. GENERALIZED DISCRETE TIME ALGORITHM 

 

Let the nonlinear system be given as 
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Here ‘g’ is the vector valued function and Z is the vector of observables defined in the interval Nj ttt 0 . Equations 

(56) and (57) are rewritten to express explicitly the model error (discrepancy) 
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Here ‘f’ is the nominal model, which is as such a deficient model. The vector v is measurement noise with zero mean and 

covariance matrix R, the variable ‘d’ is the model discrepancy, which is determined by minimizing the criterion 
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Minimization should obtain two things: Xx ˆ and estimate )(ˆ kd  for Nk ,,0 .By incorporating the constraint (58) 

in (60), we obtain 
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The Euler-Lagrange conditions yield  
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which is solved by using invariant embedding method. The resulting generalized discrete time IE recursive algorithm is 

given as 
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6. CONVENTIONAL INVARIANCE EMBEDDING ESTIMATORS 

 

Now, we can obtain the conventional IE estimators by choosing the value of 1  in the generalized IE estimators. 

Conventional continuous time IE estimator is given as 
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Conventional discrete time IE estimator is given as  
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7. ROBUST ESTIMATION OF MODEL ERROR IN H INFINITY SETTING 

 
Filtering in/of dynamical systems have historically been accomplished through the application of the KF (EKF), while it has 

been rather successful in general, in some practical applications it has been have found that model uncertainty is 

problematic. To resolve this issue, filters based on alternative performance criteria have been developed. The design of 

filters with accurate and predictable performance led to the filters which are termed as robust, and H-infinity (H) norm 

based H-infinity filters (HIFs) belong to this class of robust estimators; H filter places a (upper) bound on the (error) energy 
(variance) gain from the deterministic inputs to the filter error [6]. The problem of estimation of deterministic model error, 

d, is traditionally solved by formulating it as a TPBVP as we have seen previous sections. This with the use of invariant 

embedding method (IEM) gives the recursive solution for the state estimates, and we obtain the model errors also explicitly. 

Robust Hfilters can estimate the parameters even under some uncertainties with yet acceptable performance.  

 

Performance Norm 

 

A quantitative treatment of the performance and robustness of control systems requires the introduction of appropriate signal 

and system norms, which give measures of the magnitude of the involved signals and system operators. Consider a LTI 

system with the disturbance to error transfer function. The system and variables are defined as: i) Gz das the TF matrix from 

the system disturbance, say d, to the estimate error; ii) zasoutput; and iii) z = z − z as estimate of the error.The L2-norm of 

an error signal vector is given as [6] 
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However, the H∞-norm of an error system matrix is 
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2

 d 2
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Discrete  Gz d ∞
2 =  supTϵ[−π ,π]

−2(Gz d ejT )        (78) 

 

G(jw)is the maximum gain at the frequency  [6]. Consider a stable system with transfer function, G(s). The H∞ norm is 

defined as 
 
 G ∞ =  max G(jw)            (79) 

 

In the event that the maximum may not exist, the H∞ norm of the transfer function matrix G(s) is given by 

 
 G ∞ =  sup G(jw)            (80) 

  

For an H∞ criteria, the TF from the input disturbances to the estimator error shall be required to have a system gain that 

conforms to an upper bound 
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 G ∞ < γ2             (81)
  

Hence, the performance bound criteria can be written as 
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2
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On simplifying, 
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Constraint on cost function 

 

Let the mathematical description of dynamic system be given as 
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z(t) =  Hx(t)  +  v(t)           (85) 

 

We have seen that the basic cost function is given by 

 

J =    z t − Hx t  
T

R−1 z t − Hx t  + (dT t Qd t ) 
tf

t0
dt      (86) 

 

We can combine the conventional LS cost functional and the HI norm based criterion (83) by appending H-infinity norm to 

the basic cost function to obtain 

 

J = sup||z − z ||2
2 − γ2||d||2

2<0          (87) 

 

We see from (83) and (87), that to obtain the formal and proper robust estimator we need to have the cost function J strictly 
negative, and not only necessarily minimum. Here, we invoke the generalized IE estimator criterion  

 

J =    z t − Hx t  
T

R−1 z t − Hx t  + α(dT t Qd t ) 
tf

t0
dt      (88) 

 

In essence the last terms related to only ‘d’ in (86), (87), and (88) are exactly the same we specify certain new conditions on 

the cost function 

 

i) If J is strictly negative, we obtain the formal and proper robust estimators using (87) at a level  

ii) If J is not necessarily strictly negative and it has attained some minimum we obtain generalized IE estimators using 

(88) at an  level 

iii) If J is again some minimum, but with 1  , we obtain the conventional LS based IE estimators. 

iv) In (88), if we put 
2   in (88), then we can get semi robust estimators at level, and we can even call them as 

(some) adaptive IE based estimators. In this case if we practically (during implementation with real data) get the 

(actual value of) cost function less than zero then we have obtained practically the robust estimator. 

 

We have already obtained, in the preceding sections, the IE based estimators that would satisfy the condition at ii) and iii). 

 

Semi robust-adaptive IE estimators  
 

Obtaining the IE+HI based formal and proper robust estimators based on condition i) might be rather difficult and hence, we 

try to obtain the estimators that satisfy the condition iv) on J. We also observe that the semi robust/adaptive (SRA) estimator 

equations can be easily obtained by using the condition
2   , in the generalized estimators. Continuous time SRA 

estimator is given as  
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))()(()()),((ˆ tHxtzRHtSttxfx T  12         (89) 

211 1( ) ( ) ( ) 2 ( ) ( )
ˆ ˆ 2

T TS t S t f f S t S t H R HS t Q
x x

            (90) 

 

We also, have the explicit expression for the model error (discrepancy)  

 

))()(()()(ˆ tHxtzRTHtStd  12          (91) 

 

And correspondingly (55) becomes  

 

21 1  
ˆ2

a Q b f a
x

      

 

Discrete time SRA estimator is given as  

 

)]),(ˆ()([)()()),(ˆ(ˆ)(ˆ 11111121  kkxhkzRkTHkSkkxxfkx   (92) 

 

  )()()()()( 11112I1
11 
 kPkHRkHkPkS T

      (93) 

 

2 1

ˆ

1
ˆ ˆ( 1) ( ( ), ) ( ) ( ( ), )

ˆ 2

T

xP k f x k k S k f x k k Q
x

            (94) 

and )]),(ˆ()([)()()(ˆ kkxhkzRkHkSkd T  1 2        (95) 

 

8. PROCEDURE OF MODEL FITTING TO THE DISCREPANCY AND RESULTS 

 

Once we determine the time history of the discrepancy, d(t), we need to fit a mathematical model to it in order to estimate 
the parameters of this model by using a regression method. Assume that the original model of the system is given as 

2
2423

2
12110 xaxaxaxaakz )(         (96) 

 

Since, we would not know the accurate model of the original system, we would use only a deficient model in the system 

state equations 

2
2423110 xaxaxaakz )(          (97) 

 

The above equation is deficient by the term 
2
12xa . When we apply the invariant embedding model error estimation 

algorithm to determine the discrepancy, we will obtain time history of ‘d’, when we use the deficient model (97); and once 

the ‘d’ is estimated, a model can be fitted to this ‘d’ and its parameters estimated. In all probability, the estimate of the 

missing term will be obtained 

2
12xakd ˆˆ)(              (98) 

In (98) 1x̂  is the estimate of state from the model error estimation algorithm. In order to decide which term should be 

added, a correlation test can be used. Then the total model can be obtained as 

2
2423

2
12110 xaxaxaxaakz ˆˆˆˆˆ)(ˆ          (99) 

 

Under the condition that the model error estimation algorithm has converged, we will get xx ˆ  and ii aa ˆ , thereby 

obtaining the correct or adequately accurate model of the system [5].The performance of the generalized nonlinear 
continuous time IE estimator at an alpha level is demonstrated now. We consider the following system, and utilize the 

continuous time generalized estimator, 
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x 1 t = 2.5 cos t − 0.68x1  t − x2 t − 0.0195x2
3(t)       (100) 

 

x 2 t =  x1(t)            (101) 

 

We estimate the model discrepancy in (101) by eliminating the terms from it turn: i)
3
2X , and ii)

3
221 ,, XXX  

Then, we fit a model to the discrepancy thus estimated 

 

d t = a1x1 t + a2x2 t + a3x2
3(t)         (102) 

 

to estimate the parameters of the continuous-time nonlinear system. Data are generated by integrating (100) and (101) for a 

total of 14 sec. using a sampling time =0.05 sec. We consider case in which a deficient model is formulated by removing the 

term x2
3(t) from the equation (102). The deficient model is then used in the robust invariant embedding model error 

estimation algorithm as ‘f’ and the model discrepancy d(t) is estimated. The parameters are estimated from the model 

discrepancies using LS method. The numerical result is shown in Table 1. It is to be noted that in all the cases, from the 

estimated model discrepancy, the parameter that is removed from the model is estimated.Figure 1 shows the model error and 

state time history match. The match is very good and it indicates that the model discrepancy is estimated accurately by the 

algorithm. This example shows that the generalized IE method at some alpha level gives satisfactory results. 

 

Table 1 Generalized continuous time TE estimator at alpha level 

 

 
 

 

 

 

 

 

 

 

 

 
  

Figure 1. Model error/state time history match by continuous time IE estimator at alpha level 

 

 

Parameter 
1a
 

1X
 

2a
 

2X
 

3a
 

3
2X

 

Terms 
removed 

True Value 0.68 1 0.0195 - 

Estimated value (J=0.00016722) (0.68) (1) 0.0188 3

2X  

Conventional IE method  

(J=0.0012) 

(0.68) (1) 0.0182 3

2X  
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CONCLUDING REMARKS 

 

In this paper we have presented generalized continuous and discrete time invariant embedding estimators for determination 

of model errors in nonlinear systems. Also, we have indicted the possibility of extending these to HI based robust 

estimators. The conventional IE based estimators are obtained as a special case, and the performance is compared with the 

generalized estimator with simulated data form a nonlinear system. The results are encouraging, however further work with 
more dynamic systems would be useful.    
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