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ABSTRACT 

 

Flow through a variable permeability porous layer, bounded by two constant-permeability layers is considered. 

Flow in governed by Brinkman’s equation which is reduced to a generalized Airy’s equation in the variable 

permeability layer for a particular choice of permeability function. Solutions are then obtained in terms of the 

generalized Airy’s functions. 
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1. INTRODUCTION 

 

In a series of articles, [1-4], coupled parallel flow through variable permeability porous layers has been considered. 

This type of flow is important in various industrial and natural applications that involve ground water recovery, flow of 

oil and gas, and in the design of cooling and heating systems, [5,6]. In particular, the problem of fluid flow through 

three layers with different permeability in each layer was previously considered, [1], where the middle layer was a 

variable-permeability transition layer. We assumed that the permeability in the middle layer to be a variable function of 

y, taken as a shifted rectangular hyperbola, while the bounding layers possessed constant permeability. The choice of 
variable permeability function was an idealization, by design, to result in an inhomogeneous Airy’s ordinary 

differential equation whose solution is expressible in terms of the newly introduced Nield-Kuznetsov function [7,8,9]. 

The chosen permeability idealization is a subcase of the more general permeability function that is the reciprocal of a 

polynomial of degree n. The flow in the variable-permeability layer is then governed by a generalized inhomogeneous 

Airy’s ordinary differential equation, [10].  

 

In the current work, we consider flow through a transition layer bounded by two porous layer. This is the same 

configuration used in [1] except that the permeability in the transition layer is modelled in such a way that reduces the 

governing Brinkman’s equation to a generalized Airy’s differential equation. This approach offers a general approach 

to variable permeability modelling. 

 

3. PROBLEM FORMULATION 
 

Consider the steady flow of an incompressible viscous fluid in a composite of three porous layers, shown in Fig. 1. This 

is the same representative sketch used in [1], and the flow problem is governed by the same governing equations 

subject to the same boundary conditions. The only difference in the problem formulation is the description in the 

permeability distribution in the transition, middle layer, which we take in this work in a form that reduces Brinkman’s 

equation to a generalized Airy’s equation. 

 

In order to illustrate the effects of this variable permeability function, we consider the same problem formulation as 

given in [1] and replace the permeability distribution with the more general permeability distribution, defined as 

follows: 

mailto:hamdan@unb.ca


International Journal of Enhanced Research in Science, Technology & Engineering 

ISSN: 2319-7463, Vol. 5 Issue 6, June-2016 

 

Page | 2  

 

 

4.  

Figure  1. Representative Sketch 
 

 

For porous layer 1:  

                     (1) 

For porous layer 2:  
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For porous layer 3:  

                      (3) 

 

 

In equations (1), (2) and (3),    is a reference constant permeability, a and b are constants to be selected as in a=2 and 

b=1,   and  are parameters that determine the thickness of each layer. We note that at each interface between layers 

the permeability is continuous with 
021 )( aKHKK    and .)( 023 bKHKK   When n=1, we recover the 

permeability distribution of [1]. 

                                  

The governing equations and boundary conditions associated with the configuration in Fig. 1 are stated as follows.  

 

In layer 1, the flow is governed by: 
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In layer 2, the flow is governed by: 
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In layer 3, the flow is governed by: 
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In equations (4), (5) and (6),
dx

dp
G  is the common constant pressure gradient, )( ***

yuu ii   is the velocity in the 

ith  layer, for i=1,2,3, iK is the permeability in the ith  layer, i is the viscosity of the base-fluid saturating the ith  
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layer, and ieff  is the effective viscosity of the fluid in the ith layer.  We note that the viscosities of the base fluids in 

the three layers should be equal, 321   , if the base fluid is the same. The effective viscosities, eff1 , eff2 and

eff3  however, are not necessarily equal. 

 

Now, introducing the dimensionless variables:  
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                                                                                                                           (7) 

and defining 
2

0

H

K
Da   as the Darcy number, and

i

ieff
iM




 , equations (4), (5) and (6) take the following 

dimensionless forms, respectively: 
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Now, substituting the permeability distribution, equations (1)-(3), in the dimensionless equations (8)-(10), respectively, 

we obtain the following form of governing equations: 
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In equation (12), n is a positive integer. The case when n=1, has been discussed in [1]. In this work we will assume that 

   . 

 

Equations (11), (12) and (13) are to be solved subject to the conditions of no-slip at the solid walls (y = 0 and y = 1), 

velocity continuity and shear-stress continuity at the interfaces between layers ( ,y ), where the shear stress in 

each layer is defined based on the effective viscosity, namely 
dy

dui
ieff  for i=1,2,3. These conditions are stated as 

follows:  

 

01 u at y = 0                               (14) 
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32 uu    at  y                          (17) 

 

dy

du

dy

du 32
2   at  y                           (18) 

 

03 u at y = 1                            (19) 

where  
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Solutions of equations (11) and (13) are given, respectively, by: 
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The values of
1 ,

2 are given below, and 
1a ,

2a ,
1c ,and 

2c  are arbitrary constants that must be determined once 

equation (12) is solved and the boundary and matching conditions are implemented: 

 

1

1

1

aDaM
                                                                                                                         

(24) 

3

3

1

bDaM
 .                                                                                                                       

(25) 
 

 To solve equation (5), we first let 
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 and write equation (5) as  
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where 
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(29) 
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Equation (29) is a generalized inhomogeneous Airy’s differential equation. Solution to the homogeneous part is a linear 

combination of the linearly independent functions      , and        (cf. Swanson and Headley,[10]), namely   
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The terms           are the modified Bessel functions defined as:    
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with    
 

   
,      , and   is the gamma function.    

 

The Wronskian of       and       is given by, [10]:  
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We note that       and       are Airy’s functions       and      , respectively, when    . 

 

 

3. SOLUTION METHODOLOGY 

 

At this stage it is convenient to define the following integral function so as to parallel the Nield-Kuznetsov function, 

Ni(Y), [7]: 
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The function       reduces to Ni(Y) when      We will use this function to express the particular solution to (27), 

as follows. Using the method of variation of parameters, a particular solution of equation (27) is given by:  
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and the general solution takes the form:  
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21,bb  are arbitrary constants. 

 

The derivative of the functions      ,       and       are given, respectively, by (cf. [10]):  
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and  
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For convenience, and to simplify the appearance of equation (38), we let 
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Equation (38) then becomes: 
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and express equations (45) and (46), respectively, as : 
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Equations (50) and (51) give us a compact form of the expressions of velocity and shear stress, respectively. Either 
equations (45) and (46) or equations (50) and (51) can be used in imposing boundary and interfacial conditions, and in 

the solution for the arbitrary constants. In what follows we will use equations (45) and (46). 

 

3.1. Determining the Arbitrary Constants 

 

Using the boundary and matching conditions, given by equations (14) to (19), we obtain:  
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Equations (52) through (57) represent a system of six equations in six unknowns that can be written in the matrix-

vector form 
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An analytic solution to this system is rather involved and cumbersome. However, for given values of the functions and 

parameters, we can easily obtain numerical values for the constants, as will be explained in the following section of 

Results and Discussion. 

 

4. RESULTS AND DISCUSSION 

 

Solving governing equations (11)-(13) translates into calculating the velocity in each layer, subject to boundary and 

interfacial conditions. Transforming, non-dimensionalizing, and solving the resulting equations requires specifying and 

calculating flow parameters and problem-formulation parameters and arbitrary constants. These are specified and 

calculated below, in preparation for computing the velocity profiles and shear stress values across the layers. 

 

 

4.1. Values of Parameters Involved 
 

4.1.1. Choice of Permeability Parameters 

 

We chosse ab  so that 
 

  
 

        
 

         and, for the sake of illustration, we take in this work 

2a   and 1b , so that parameter 
 

 in equation (26) is well-defined for every value of the integer n, since all the 

quantities under the radical are positive. 

 

4.1.2. Choice of the Integer n 

 

An increase in the integer n influences (increases) the permeability value in the middle, variable-permeability layer. 

Although we will concentrate on results obtained for n=2, the method of analysis is valid for any value n > 1. 

   

4.1.3. Choice of Layer Thickness 

 
We choose the following layers thicknesses as representative of thick and thin layers, and layers of the same thickness: 

(i) Layers are of equal thicknesses, where we choose 
3

1
  and 

3

2
 . 

(ii) Thick variable-permeability middle layer, where we choose without loss of generality 
4

1
  and 

4

3
 . 

(iii) Thin variable-permeability middle layer, where we choose without loss of generality 49.0  and 

51.0 . 

 

4.1.4. Values of n  and n  

 

Parameters n  and n  have been defined by equations (42) and (43), respectively. Values of n , for 52  n  are 

given in Table 1. Values of n  for 52  n and the above range of layer thicknesses are shown in Table 2.  

 

 

Table 1. Values of  n  for choices the integer n 

 

n 
n  

n=2 0.414213562 

n=3 0.259921050 

n=4 0.189207115 

n=5 0.148698355 
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Table 2. Values of n   for choices of layer thicknesses and integer n 

 

 

 n=2 n=3 n=4 n=5 

3/2

3/1








 

2 =0.19526214 3 =0.2466929834 4 =0.2702642951 5 =0.2837672151 

4/3

4/1








 

2 =0.3964466095 3 =0.4350197375 4 =0.4526982212 5 =0.4628254112 

51.0

49.0








 

2 =-0.1829646454 3 =-0.107361314 4 =-0.072711486 

 
5 =-0.0528621940 

 

4.1.5. Choice of Effective Viscosities 

We choose 121  and 3,2,1,1  iM
i

ieff

i



, for illustration. However, the method of solution adopted in this 

work is still valid for different values of 
1 ,

2  and iM . 

 

4.1.6. Choice of Darcy Number 

 

We have chosen and tested the following range of values for the Darcy number Da: 1; 0.1; 0.01; 0.001; 0.0001; 

0.00001. For low values of Da, computations become inaccurate. The most reliable results are found for Da greater 

than or equal to 0.001, hence are reported in this work. 

 

4.1.7. Values of n  and    

 

For n = 2, values of n and   , given by equations (26) and (44), have been calculated for various values of 1 ,and 3 , 

and for choices of layer thicknesses and Darcy number. These values are given in Table 3. 

 

Table 3. Values of 1 , 2 ,   and 3    for choices of layer thicknesses and Darcy number 

 

       

           Da          

Da=1 Da=0.1 Da=0.01 Da=0.001 

3/2

3/1








 

1  0.707107 2.2360689 7.071068 22.3606797 

3  1 3.162278 10 31.622777 


 
 2.263033440 4.024305770 7.156340092 12.72597224 

   5.056317063 1.598947849 0.5056317063 0.1598947848 

4/3

4/1








 

1  0.7071067810 2.236067977 7.071067814 22.36067977 

3  1 3.16227766 10 31.62277660 


 
 1.847759066 3.285831902 5.843127218 10.39071282 

   7.584475595 2.398421774 0.7584475591 0.2398421774 

51.0

49.0









 

1  0.707106781 2.236067977 7.07106781 22.360679 

3  1 3.1622777 10 31.62277660 


 
 9.238795328 16.42915950 29.21563609 51.95356410 

   0.3033790241 0.09593687104 0.030337902 0.009593687 
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4.1.8. Values of 
 

 
  ,

 

 
, and 

 

 
 

Parameters 
 

 
  ,

 

 
 ,

 

 
, defined by equations (47), (48), and (49), respectively, have been calculated for choices of 

layer thicknesses and Darcy number, and presented in Table 4. 

 

Table 4. Values of 
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and for choices of layer thicknesses and Darcy number 

 

 

       

           Da          

Da=1 Da=0.1 Da=0.01 Da=0.001 

3/2

3/1








 


 

 
 0.9373791421 1.666922028 2.964253120 5.271270291 


 

 
 0.4418847662 0.7857945812 1.397362325 2.484900651 


 

 
 4.739686150 2.665321390 1.498820363 0.842848628 

4/3

4/1








 

 


 

 
 0.7653668644 1.361036136 2.420302538 4.303974169 


 

 
 0.7325378169 1.302656917 2.316487974 4.119362868 


 

 
 5.804906304 3.264338704 1.835672552 1.032274536 

51.0

49.0








 


 

 
 3.826834321 6.805180677 12.10151269 21.51987084 


 

 
 -1.690372911 -3.005955342 -5.34542849 -9.50566543 


 

 
 1.160981262 0.6528677410 0.367134510 0.206454907 

 

 

 

4.2. Calculations of nn BA ,  and nZ  using the selected parameters 

 

In order to calculate the arbitrary constants appearing in the velocity profile and shear stress terms, as shown in the next 

subsection, we need values of    
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 ,    
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 ,    
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  
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 ,   

  
 

 
  

  2,  2′  1 +  2, 2  1 +  2, 2  1 +  2, 2  1 +  2,  2′  1 +  2, 2′  1 +
 2, 2′  1 +  2. These are the generalized Airy’s functions  2 and  2 and their derivatives, and the integral 

function    and its derivative. They are calculated and tabulated in Table 5(a-d) for different Darcy number and layer 

thicknesses. Table 5(a-d) illustrate the extreme increases in these functions with decreasing Darcy number. 

 

Table 5(a). Values of    
 

 
  

 

 
     

 

 
  

 

 
     

 

 
  

 

 
 ,  for  

choices of layer thicknesses and Darcy number 

 

 

       

           Da          

Da=1 Da=0.1 Da=0.01 Da=0.001 

3/2

3/1








 

2A

 

0.146833896 0.065058886 0.0072952886 0.00001186707 

2B  0.8917209197 1.353810836 6.560838905 2238.232882 

2Z

 

-0.064732692 -0.22516722 -1.629536185 -572.2841478 

4/3

4/1








 

2A

 

0.1194469599 0.38374950 0.001603171  
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2B
 

0.9861568103 1.87457561 24.16709524  

 

2Z
 

-0.098410257 -0.3837495 -6.149544169 

 
 

 

51.0

49.0









 

2A
 

0.2525057430 0.2246758878 0.1767009278 -0.1410989080 

2B
 

0.6491680997 

 

0.705837001 0.8118996417 0.7319688512 

2Z
 

-0.00384248 

 

-0.012155268 -0.038572894 -0.2617292710 

 

Table 5(b). Values of   
  

 

 
  

 

 
    

  
 

 
  

 

 
    

  
 

 
  

 

 
    

  
 

 
  

 

 
 

 
 ,  

for choices of layer thicknesses and Darcy number 

 

 
 

 

 

 

Table 5(c). Values of    
 

 
  

 

 
     

 

 
  

 

 
     

 

 
  

 

 
 ,  for  

choices of layer thicknesses and Darcy number 

 

 

       

           Da          

Da=1 Da=0.1 Da=0.01 Da=0.001 

3/2

3/1









 

2A

 

0.09860649264 0.022958640 0.00036135186 1.2408.10
9

 

 

2B  1.08432681 2.671724523 92.60297902 1.5122.107  

2Z

 

-0.1336877333 -0.60691222 -23.65660180 -3.8666.
610  

       

           Da          

Da=1 Da=0.1 Da=0.01 Da=0.001 

3/2

3/1








 

2A

 

-0.16918615 -0.106082395 -0.018777713 0.00005168606 

 

'

2B

 

0.505416316 1.252151498 13.96538664 9218.246192 

'

2Z
 

-0.17531794 -0.405704412 -3.616131622 -2357.032801 

 

4/3

4/1








 

2A

 

-0.15337583 -0.072464982 -0.00493826  
 

'

2B

 

0.618068962 2.332985064 65.95405078  

 

'

2Z

 

-0.22330147 -0.67764337 -16.88836506  

 

51.0

49.0









 

2A

 

-0.194481221 -0.192186413 -0.181465281 0.05242814112 

'

2B

 

0.3913894107 0.398025786

1 

0.439994757 1.536320030 

'

2Z

 

-0.041594038 

 

-0.074043431 -0.133052950 -0.2827885351 
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4/3

4/1









 

2A
 

0.06882950752 0.0085424722 0.000019070  

2B
 

1.311585931 5.762401534 1430.166960  

2Z
 

-0.211393401 -1.422479637 -365.6678926  

 

51.0

49.0









 

2A
 

0.2376530136 0.1987990539 0.1348769032 0.05242814112 

2B
 

0.6792099139 0.7609573701 0.9295310212 1.536320030 

2Z
 

-0.007685874 

 

-0.024338882 

 

-0.078047397 -0.2827885351 

 

 

Table 5(d). Values of for   
  

 

 
  

 

 
    

  
 

 
  

 

 
    

  
 

 
  

 

 
  for  

choices of layer thicknesses and Darcy number 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

4.3. Calculations of Values of Arbitrary Constants of Equation (6.40) 

 

In order to determine velocity profiles and shear stress values, we must determine the arbitrary constants by solving 

equation (40). This requires using data in tables (Table 1 to Table 5)  in equation (40) to obtain a system that can be 

solved numerically to calculate the  values of the constants 212121 ,,,,, ccbbaa .The values of the constants are  

tabulated in  Table 6 for different layer thickness and Darcy numbers. Table 6 shows that some of the arbitrary 

constants attain extremely large values as Darcy number falls below 0.001, which implies unboundedness of the 

solution for the indicated small values of Da. 

 

       

           Da          

Da=1 Da=0.1 Da=0.01 Da=0.001 

3/2

3/1









 

2A

 

0.138008130

1 

-0.048745809 -0.0012695536 -7.5455.
910

 

'

2B
 

0.764991842

2 

4.131067844 297.5344403 8.943.
710  

'

2Z

 

-0.271968597 -1.126644226 -76.09151575 -2.866.
710  

4/3

4/1









 

2A

 

-0.110173205 0.021493363 -0.00008101  
 

'

2B

 

1.170681799 11.84969502 5727.255599  
 

'

2Z

 

-0.38451116 -3.07820516 -1464.417065  

 

51.0

49.0









 

2A

 

-0.193542157 -0.18764106 -0.162856903 -0.09130406 

'

2B

 

0.393949673
8 

0.4139467720 0.5464133085 1.617581823 

'

2Z

 

-0.058843424 -0.105079381 -0.194740018 

 

 

-0.49876870 
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Table 6. Values of arbitrary constants, 212121 ,,,,, ccbbaa , for  

choices of layer thicknesses and Darcy number 

 

 

 

 

 

4.4. Dimensionless Permeability Distribution  
 

 
 

Permeability distributions for various values of n, Da, and thickness of the middle layer are illustrated in 

Figures 2 and 3. Fig. 2(a,b) illustrate the effects of increasing n on the permeability distribution in the 

variable permeability layer. Both graphs show the relative increase in permeability as n increases, for a given 
middle layer thickness and a given Darcy number. Effects of increasing Darcy number on the permeability 

distribution, for a given middle layer thickness and a given value of n, are illustrated in Fig. 3(a,b). These 

 

       

           Da          

Da=1 Da=0.1 Da=0.01 Da=0.001 

3/2

3/1








 1a   

-0.66445477 

  

-0.0237808 

  

-0.000218047 
5.7. 810  

2a                            
-1.33554522 

                          
-0.17621915 

                          
-0.019781952 

 

-0.001999943 

1b                            

-3.18353222 

                           

-1.8007126 

                           

-1.1623545 

 

-11.975 

2b                            

1.007705907 

                           

0.40141850 

                           

0.12928970 

                      

0.040883726 

1c    -

0.27000450 

  -0.00415849 -4.5565.
710

                                -1.8477.
1710  

2c   

-0.72320342 

   

-0.0415384 

 

  0.80453040   
 

-0.27054064 

4/3

4/1








 1a   -

0.66458477 

 

 -0.024066376 

 

-0.0002875593 

 

0.000082 

2a                             

-1.3354150 

                          

-0.17593362 

                          

-0.019712441 

                            

-0.002082 

1b                             

-6.4488795 

                           

-4.2025049 

                           

-4.7571927 

   

-3260                         

2b                             
1.6270872 

                           
0.60731433 

                           
0.19392830 

                        
0.061325704 

1c                            

-0.27007734 

                         

-0.004168687 

 

 

 

-1.8467278. 1710  

2c                            

-0.72266492 

                          

-0.035850304 
 

1.2168351 

 

 

 

51.0

49.0








 1a   

-0.66443581 

 

-0.023627378 

 

-0.0001697113 

 

 

 

2a                             

-1.3355642 

                          

-0.17637261 

                          

-0.019830290 
 

-0.0019999919 

1b                             

0.16465943 

                           

0.11627925 

                          

0.025133581 
 

-0.00064329179 

2b                             

0.11637518 

                          

0.064325002 

                          

0.013158060 
 

0.00064329179 

1c                            

-0.26991787 

                         

-0.004147873 

 

 

 

 

 

2c    -0.7238436  -0.047466486 0.54580252 3127.5428 
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figures show the expected increase in permeability with increasing Darcy number. 

 

 
Figure 2(a): Permeability distribution Da=1, 9.0,1.0   , a=2,b=1 

and different values of n. 

 

 
Figure 2(b): Permeability distribution Da=1, 75.0,25.0   , a=10,b=1, 

and different values of n. 
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Figure 3(a): Permeability distribution n=2,
3

2
,

3

1
  , a=2,b=1 

and different values of Darcy number. 

 

 

Figure 3(b): Permeability distribution n=5,
3

2
,

3

1
  , a=2,b=1 

and different values of Darcy number. 
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4.5. Velocity and shear stress computations at the interfaces between layers 

 

Velocity and shear stress at the interfaces between the layers take the following forms: 
 

           
 

 
  

 

 
       

 

 
  

 

 
       

 

 
  

 

 
    (62) 

 

           
 

   
 

 
       

 

   
 

 
       

 

   
 

 
  (63) 

 

      

  
   

 

 
  

  
 

 
  

 

 
    

 

 
  

 
 

 

 
  

 

 
  

 

 
  

  
 

 
  

 

 
  (64) 

 

      

  
   

 

 
  

  
 

   
 

 
    

 

 
  

 
 

 

   
 

 
  

 

 
  

  
 

   
 

 
  

 

(65) 

 

Table 7(a) illustrates the velocity values at the lower and upper interfaces. This Table shows that for all choices of   

and   the velocity values at the interfaces are very close to each other numerically whether the velocity expression 

used is that of the middle layer or that of an outer layer. This is true for high values of Darcy number. As Da reaches 

0.001, inaccuracies start taking place and are caused by inaccuracies of computations and approximations of the Airy’s 
functions, which in turn influence the computations of the arbitrary constants involved.  

 

Similar conclusions are reached from Table 7(b), which illustrates the shear stress values at the lower and upper 

interfaces and shows that inaccuracies start at Da = 0.001. 

 

Table 7(a). Velocity at the lower and upper interfaces 

 

       

           Da          

Da=1 Da=0.1 Da=0.01 Da=0.001 

3/2

3/1








 

)(1 u  0.1038331 0.06626168 0.015824149 0.0019004595 

)(2 u

 

                           
0.10383300 

                           
0.06626168 

                           
0.01582413 

                            
0.001903 

)(2 u

 

                           

0.10279805 

                           

0.06071672 

                            

0.010665 

                              

0.01 

)(3 u

 

                           

0.10279806 

                          

0.060716722 

                          

0.010665830 

                         

0.00099997336 

4/3

4/1








 

)(1 u  0.0878745 0.05731534 0.014950363 0.023950278 

)(2 u

 

                          

0.08787390 

                           

0.05731529 

                           

0.0149505 

                             

0.024 

)(2 u

 

                           

0.0868835 

                           

0.0519834 

                            

0.00985 

                             

13400. 

)(3 u

 

                           

0.08688353 

                          

0.051984085 

                          

0.009847566 

                           

150.28669 

51.0

49.0









 

)(1 u   0.1159588  0.07036197  0.013953930  0.0015307718 

)(2 u

 

                           
0.11595878 

                          
0.070361970 

                          
0.013953930 

                          
0.0015307713 

)(2 u

 

                           

0.11584326 

                          

0.069729793 

                          

0.013252970 

                          

0.0013097894 

)(3 u

 

                           

0.11584326 

                          

0.069729790 

                          

0.013252969 

                          

0.0013097907 
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Table 7(b). Shear stress at the lower and upper interfaces 

  

 

       

           Da          

Da=1 Da=0.1 Da=0.01 Da=0.001 

3/2

3/1








 )(1 

dy

du
 

0.1513468697 0.07494555 -0.003034054 -0.00217397 

)(2 
dy

du
 

                          
0.1513468658 

                           
0.0749456 

                            
-0.0030338 

 
-0.0021 

)(2 
dy

du
 

                           

-0.154591939 

                           

 -0.0923160 

                             

-0.01383 

 

0 

)(3 
dy

du
 

                          

-0.154591941 

                          

 -0.092315967 

                           

-0.013819155 

 

 
 

4/3

4/1








 )(1 

dy

du
 

0.2304745740 0.13081715 0.011885128  

-0.00135703 

)(2 
dy

du
 

                          

0.230474552 

 

0.130817149 

 

0.011885174 

 

-0.001384668 

)(2 
dy

du
 

                          

 -0.230391214 

 

-0.130681377 

 

-0.014963072 

 

-4099.43426 

)(3 
dy

du
 

                          

-0.230391213 

 

-0.130681378 

 

-0.014963467 

 

66.4174053 

51.0

49.0









 

)(1 
dy

du
 

 0.0034674657 -0.026184815 -0.03398034 -0.01049068 

)(2 
dy

du
 

                         

0.00346747194 

 

-0.026184815 

 

-0.03398034 

 

-0.010490688 

)(2 
dy

du
 

                          

-0.0148268056 

 

-0.035881143 

 

-0.03402269 

 

-0.009796469 

)(3 
dy

du
 

                          

-0.0148268147 

 

-0.035881143 

 

-0.03402269 

 

-0.097964695 

 

 

 

4.6. Mean velocity across the layers 

 

The mean velocity across the layers is defined as: 

dyudyudyuuuuu   

1

3

0

21321



 



                                                              (66) 

where 321 ,, uuu  are the mean velocities in layers 1, 2, and 3, respectively. Mean velocity calculations are illustrated for 

Da = 1 and different layer thicknesses in Table 8. This Table clearly shows the highest mean velocity being across the 

variable permeability layer for large thickness. This is due to the high flow rate in the middle layer, where a high 

permeability is associated with this layer. When the middle layer is thin, Table 8 shows a decrease in the mean velocity 
across this layer due to the fact that permeability does not remain high enough to influence the mean velocity. 
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Table 8.  Mean velocity across each porous layer and across the channel. 

 

 

3/2

3/1








 1u  0.020295189 

4/3

4/1








 1u  0.012253769 

51.0

49.0








 1u  0.037816843 

2u  0.080326876  
2u  0.139845711  

2u  0.0023977597 

3u  0.020028615  
3u  0.012098218  

3u  0.037401303 

u  0.120650682  u  0.164197699  u  0.077615907 

 

 

4.7. Velocity profiles across the layers 

Velocity across the three layers is illustrated in Fig. 4(a-c) for different values of n, Da and a and b. For Da = 1, the 

velocity profile possesses a parabolic shape (Fig. 4(a)) that is lost with decreasing Da. As the product bDa decreases, 

or equivalently permeability in the upper layer decreases, and the product aDa increases, or equivalently permeability 

in the lower layer increases, velocity across the upper layer decreases and velocity across the lower layer increases, 

causing a loss in the parabolic velocity profile. This is true when Da decreases and assumes values below unity (Figs. 

4(b,c)).  
 

When Da = 1, the parabolic velocity profile is due to the dimensional permeability approaching infinity, and the flow is 

less affected by the introduction of a porous layer. The effect of increasing n is also illustrated in Fig. 4(a-c), which 

demonstrate the increase in velocity in the middle layer with increasing n. Numerically, this is attributed to increasing 

permeability due to increasing n (as can be seen from equation (2), where the denominator is less the numerator, and 

the ratio in the permeability expression is greater than unity and increases by taking higher powers). Velocity in the 

middle layer and its dependence on n are further illustrated in Figs. 5(a-c), which show the increase in velocity due to 

increasing permeability with increasing n, for given Da, a and b. Loss of parabolic shape with decreasing Da is also 

explained in terms of decreasing permeability in the upper bounding layer, which results in a slower flow in the upper 

part of the middle layer. 

 

 

Figure 4(a) Velocity Profile u(y) ,for  Da=1, 
3

2
,

3

1
  , a=50,b=1, different values of n. 
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Figure 4(b) Velocity Profile u(y) ,for  Da=0.01, 
3

2
,

3

1
  , a=2,b=1, different values of n. 

 

Figure 4(c) Velocity Profile u(y), for  Da=0.01, 
3

2
,

3

1
  , a=2,b=1, different values of n. 
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Figure 5(a) ),(2 yu  Da=1, 
3

2
,

3

1
  , a=50,b=1, and different values of n. 

 

Figure 5(b) ),(2 yu  Da=1, 
3

2
,

3

1
  , a=2,b=1, and different values of n. 
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Figure 5(c): ),(2 yu for  Da=0.001, 
3

2
,

3

1
  , a=15,b=1, different values of n. 

 

 5. CONCLUSION 

In this work we considered the flow in a layered porous configuration, consisting of three layers the middle of which is 

of variable permeability. The bounding upper and lower layers are of constant permeability. This is the same 

configuration as that of the problem in [1] but with a permeability distribution in the middle layer that results in a 

generalized Airy’s equation as the governing differential equation in the middle layer. This problem is undertaken to 

illustrate the effects of changing the power on the permeability expression (that is, the value of n) on the flow 

characteristics. The main conclusion reached here is that with increasing n, permeability in the middle layer increases 

and results in a corresponding increase in velocity.  
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