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ABSTRACT

Flow through a variable permeability porous layer, bounded by two constant-permeability layers is considered.
Flow in governed by Brinkman’s equation which is reduced to a generalized Airy’s equation in the variable
permeability layer for a particular choice of permeability function. Solutions are then obtained in terms of the
generalized Airy’s functions.
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1. INTRODUCTION

In a series of articles, [1-4], coupled parallel flow through variable permeability porous layers has been considered.
This type of flow is important in various industrial and natural applications that involve ground water recovery, flow of
oil and gas, and in the design of cooling and heating systems, [5,6]. In particular, the problem of fluid flow through
three layers with different permeability in each layer was previously considered, [1], where the middle layer was a
variable-permeability transition layer. We assumed that the permeability in the middle layer to be a variable function of
y, taken as a shifted rectangular hyperbola, while the bounding layers possessed constant permeability. The choice of
variable permeability function was an idealization, by design, to result in an inhomogeneous Airy’s ordinary
differential equation whose solution is expressible in terms of the newly introduced Nield-Kuznetsov function [7,8,9].
The chosen permeability idealization is a subcase of the more general permeability function that is the reciprocal of a
polynomial of degree n. The flow in the variable-permeability layer is then governed by a generalized inhomogeneous
Airy’s ordinary differential equation, [10].

In the current work, we consider flow through a transition layer bounded by two porous layer. This is the same
configuration used in [1] except that the permeability in the transition layer is modelled in such a way that reduces the
governing Brinkman’s equation to a generalized Airy’s differential equation. This approach offers a general approach
to variable permeability modelling.

3. PROBLEM FORMULATION

Consider the steady flow of an incompressible viscous fluid in a composite of three porous layers, shown in Fig. 1. This
is the same representative sketch used in [1], and the flow problem is governed by the same governing equations
subject to the same boundary conditions. The only difference in the problem formulation is the description in the
permeability distribution in the transition, middle layer, which we take in this work in a form that reduces Brinkman’s
equation to a generalized Airy’s equation.

In order to illustrate the effects of this variable permeability function, we consider the same problem formulation as
given in [1] and replace the permeability distribution with the more general permeability distribution, defined as
follows:
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Figure 1. Representative Sketch

For porous layer 1:

K, = aK,; for 0 < y* < nH. (1)
For porous layer 2:
& —mH "
K,(y*) = abK, ;for nH < y* < éH. 2
For porous layer 3:
K; = bK,;for éH < y* < H. 3)

In equations (1), (2) and (3), K, is a reference constant permeability, a and b are constants to be selected as in a=2 and
b=1, & and 77 are parameters that determine the thickness of each layer. We note that at each interface between layers

the permeability is continuous with K, = K, (7H) =aK, and K, = K, (&H) = bK,. When n=1, we recover the
permeability distribution of [1].

The governing equations and boundary conditions associated with the configuration in Fig. 1 are stated as follows.

In layer 1, the flow is governed by:

2,.* *
Lot d lizl—ﬂu*1+G=0 ;0<y <pH Q)
dy Ka

In layer 2, the flow is governed by:

2,,* *
Lot d%_ 2 4 +G=0; MH<y <& 5)
dy Ka(y)

In layer 3, the flow is governed by:

2,.* *
ﬂgeﬁd_u:_ﬂu*3+(3=0 i H<y <H (6)
dy”  Ks
In equations (4), (5) and (6), G =_£ is the common constant pressure gradient, u;” =u, (y") is the velocity in the

ith layer, for i=1,2,3, K is the permeability in the ith layer, y;is the viscosity of the base-fluid saturating the ith
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layer, and e is the effective viscosity of the fluid in the ith layer. We note that the viscosities of the base fluids in
the three layers should be equal, z4 = 1, = 15, if the base fluid is the same. The effective viscosities, f4q , e aNd

Haere hOwever, are not necessarily equal.

Now, introducing the dimensionless variables:

Y K
Y—F,Ui—wu i @)
and defining DazK—g as the Darcy number, and Mi:ﬂi—Eﬁ, equations (4), (5) and (6) take the following
H Hi
dimensionless forms, respectively:
d?u, H?
-—Uu,+1=0; Oo<y<n. ®
1 dy2 Kl y 77
d’u, H?
+1=0; n<y<é. )
ot K (R
d?u; H?2
——Uuz;+1=0; <y<l. 10
3 dy2 K, 3 <y (10)

Now, substituting the permeability distribution, equations (1)-(3), in the dimensionless equations (8)-(10), respectively,
we obtain the following form of governing equations:

d?u, 1 1
- =0;0<y< 11
dy? aDaM1 M1 y=1u (1)

2w, ((¥a-"B)y+ (VB¢ - Van))'
dy? abDaM,(§ — )"

1 _, (12)
Mz—O,n<y<E.

u, +

d?u, 1 1
b +—=0: . 13
dy? bDaM, Us M, 0:¢<y<1 (13)

In equation (12), n is a positive integer. The case when n=1, has been discussed in [1]. In this work we will assume that
n=2.

Equations (11), (12) and (13) are to be solved subject to the conditions of no-slip at the solid walls (y =0 and y = 1),
velocity continuity and shear-stress continuity at the interfaces between layers (y =17, &), where the shear stress in

du;
each layer is defined based on the effective viscosity, namely #if —— for i=1,2,3. These conditions are stated as

dy
follows:
u, =0aty=0 (14)
u, =u, at y=n
(15)
du
91—2 at y=n (16)
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UZZUS at y:é: (17)
dﬁ = % at y=¢& (18)
“dy  dy y=
u,=0aty=1 (19)
where
9 = Hoeff (20)
Haetf
and
g = et (21)
Haeff

Solutions of equations (11) and (13) are given, respectively, by:

U (y) = a, exp(4y) +a, exp(=4y) + ™o

(22)

uz(y) = ¢, exp(Azy) +C, exp(—Agy) + i

(23)
The values of 4, , 1, are given below, and a,,a,,c, ,.and c, are arbitrary constants that must be determined once

equation (12) is solved and the boundary and matching conditions are implemented:

1

JaDaM,

1

ybDaM 4

(24)
(25)

To solve equation (5), we first let

1

™2 abMa Dage-myn (Ya-"V5y?

W, =
(26)

and write equation (5) as

2

(o) (a VB By + @b —Vanl e, 0
2

(27)

Upon using the transformationY = @, [ (Q/E—Q/E)y+(Q/B§—%77) 1, and writingu, (y) =U, (Y), We express (27) in
the form:

du 1
~—~ YU =0
&w? ' M,Ea-b)e,
(28)
where
w, Vb(E—-n) <Y <w,Va(&-n)
(29)
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Equation (29) is a generalized inhomogeneous Airy’s differential equation. Solution to the homogeneous part is a linear
combination of the linearly independent functions 4,,(Y), and B,,(Y), (cf. Swanson and Headley,[10]), namely

U (Y) = byAn(Y) + byBy (Y) (30)
where
2p .
40 = L sin(my (172K, @) (31)
B,(Y) = ()2 (I, @) + L,(0)). (32)

The terms I, and K, are the modified Bessel functions defined as:

[oe]

Q) =i, = ).

m=1

$\ome
mTmrpiD 2 53

(1-p(D-1,(©)

T
Kp @)= 2 sin(pm) (34)
with p = nl? ¢ = 2pY, and I' is the gamma function.
The Wronskian of A, (Y) and B,,(Y) is given by, [10]:
1
W (4, (), B, (V) = p2sin(pm). (35)

We note that 4,,(Y) and B, (Y) are Airy’s functions Ai(Y) and Bi(Y), respectively, when n = 1.

3. SOLUTION METHODOLOGY

At this stage it is convenient to define the following integral function so as to parallel the Nield-Kuznetsov function,
Ni(Y), [7]:

Y
Z,(Y)=A4,() f an (t)dt — B, (Y) f A, (t)dt. (36)
0 0

The function Z,,(Y) reduces to Ni(Y) when n = 1. We will use this function to express the particular solution to (27),
as follows. Using the method of variation of parameters, a particular solution of equation (27) is given by:

Upp(Y) = ———Z, (V) 37)
2p2sin(pm)
and the general solution takes the form:

T
2p'/2sin(pm)M,(Va — Vb)? o,

Up(Y) = b1 An (Y) + b, B (Y) + 5 Zn(Y) (38)

wherein b, , b, are arbitrary constants.

The derivative of the functions A4,,(Y), B,,(Y) and Z,,(Y) are given, respectively, by (cf. [10]):

2,0 = ~ L sinom) Y K, 0) (39)

B'(Y) = p2(V)'3 [_p(@) + 1,1 ()] (40)
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and
Z,(Y) = 4,(Y) [} B, ()dt — By (Y) [ 4, (D).

For convenience, and to simplify the appearance of equation (38), we let
a, = (Va—Vb)
,Bn = [%6 - %77]

and

T

En = 1

2p2sin(pr)M (@)’
Equation (38) then becomes:

() = bydy (@ @y + ) +b:B, (@ (3 + o))

+eZn (@ (@ +5)
with

du,(y)

dy =by a)nanAn’ ( a)n(any + .Bn)) + b, a)naan, (a)n(any + .Bn))

ten o, aZy (@, (ay+8,))

We can further let:

1
Wn - Conan
2
v = B,
n
3
Wn - Ena)nan

and express equations (45) and (46), respectively, as :

W) = bidn (W v+ v )+ 0By (v iy 4y ) ez (v iy + v )
by (viy v )by B (vivey ) v vz (vive )

dy
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(41)

(42)

(43)

(44)

(4%)

(46)

(47)
(48)
(49)

(50)
(51)

Equations (50) and (51) give us a compact form of the expressions of velocity and shear stress, respectively. Either
equations (45) and (46) or equations (50) and (51) can be used in imposing boundary and interfacial conditions, and in

the solution for the arbitrary constants. In what follows we will use equations (45) and (46).
3.1. Determining the Arbitrary Constants

Using the boundary and matching conditions, given by equations (14) to (19), we obtain:

1

a1+a2=—W
1M

ayexp (A1) + az exp (—24m) — by Ay (@ VB(E = 1)) — b,B, (@ Vb(E - 1)
. 1
= EnZn(a)n \/E(f _77)) _Mll%

bid, (@ Na(€ =) +byBy(@, Na(§ —n) — ¢; exp (458) — c; exp (—A3€)

(52)

(83)

(54)
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ng (’4
&
’ A

= —eZy (@ Va(e - n)) +%3 7

Aia; exp (4m) — Aaz exp (—44m) — by L91 an a)nA;l ( a)n%(f - TI))
~b,8 @ a8, (@ Vb -m) (55)
=9 o anenZy (a)n%(f - n))
by Sty Ay (0, Va (& — 1)) +bySanct By (@, Va (& — 1)) + SpanatnenZy (o, Va (& —n))
= 05 EXP(AaE) — Co A €XP(—a)

(56)
(57)

1

crexp (A3) + cy exp (—43) = TNE
373

where

a)n’%(f—n) = l//ln+ I,Vi,and o Na@-n) = ',V:lf+ l//i.

Equations (52) through (57) represent a system of six equations in six unknowns that can be written in the matrix-
vector form

MX =C (58)
where
_ai_
a'2
b2
Cl
| C2 |
1
T M A2

EnZn ( a)n%(f - 77)) - il /1%

EnZn (a)n %(E - 77)) - %3 /1%

'91 a)nanenzé ( a)n%(f - 77))
‘92 @ nanenzrll ( @ n%(f - 77))
and
1 1 0 0 0 0 i
exp(Ay)  exp(=Apm) ~ A (@, ¥b(& 1)) B, (@, ¥b(£ 1)) 0 0
wo| O 0 ~A(@n¥a-n) “ByoVaE-n) em(id)  ew(kd) | g
Aexp(iyn) A exp(iy) —SanoAn(on¥bE-n) - daoBn(@tbE-m) 0 0
0 0 ~ e An(@aVa(E 1) - %0 Bn(Na(E 1) Ayexp(Aef) —exp(Aal)
I 0 0 0 0 exp(4;) exp(—4;) |
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An analytic solution to this system is rather involved and cumbersome. However, for given values of the functions and
parameters, we can easily obtain numerical values for the constants, as will be explained in the following section of
Results and Discussion.

4. RESULTS AND DISCUSSION
Solving governing equations (11)-(13) translates into calculating the velocity in each layer, subject to boundary and
interfacial conditions. Transforming, non-dimensionalizing, and solving the resulting equations requires specifying and

calculating flow parameters and problem-formulation parameters and arbitrary constants. These are specified and
calculated below, in preparation for computing the velocity profiles and shear stress values across the layers.

4.1. Values of Parameters Involved

4.1.1. Choice of Permeability Parameters

We chosse b < a so that wnW(E -n<Y< a)n’{/a_(f —n) and, for the sake of illustration, we take in this work
a=2 and b=1, so that parameter o in equation (26) is well-defined for every value of the integer n, since all the
quantities under the radical are positive.

4.1.2. Choice of the Integer n

An increase in the integer n influences (increases) the permeability value in the middle, variable-permeability layer.
Although we will concentrate on results obtained for n=2, the method of analysis is valid for any value n > 1.

4.1.3. Choice of Layer Thickness

We choose the following layers thicknesses as representative of thick and thin layers, and layers of the same thickness:

0] Layers are of equal thicknesses, where we choose 77 = % and & = %
(i) Thick variable-permeability middle layer, where we choose without loss of generality 7 = % and & = %

(iii) Thin variable-permeability middle layer, where we choose without loss of generality 77 =0.49 and
& =0.51.

4.1.4. Values of o, and S,
Parameters «, and S, have been defined by equations (42) and (43), respectively. Values of,,, for 2<Nn <5 are

given in Table 1. Values of £, for 2 < n <5and the above range of layer thicknesses are shown in Table 2.

Table 1. Values of «,, for choices the integer n

n a,

n=2 0.414213562
n=3 0.259921050
n=4 0.189207115
n=5 0.148698355
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Table 2. Values of S, for choices of layer thicknesses and integer n

n=2 n=3 n=4 n=5
n=1/3 [3,=0.19526214 [,=0.2466929834 [,=0.2702642951 | [3,=0.2837672151
£E=2/3
n=1/4 3,=0.3964466095 | [3,=0.4350197375 [3,=0.4526982212 | f3, =0.4628254112
&=3/4
n=049 | f,=-0.1829646454 | [3,=-0.107361314 [,=-0.072711486 | f;=-0.0528621940
£=051

4.1.5. Choice of Effective Viscosities

We choose & — g, —1and M, = 2

=1,i=123, for illustration. However, the method of solution adopted in this
Hi

work is still valid for different values of 4,9, and M; .

4.1.6. Choice of Darcy Number

We have chosen and tested the following range of values for the Darcy number Da: 1; 0.1; 0.01; 0.001; 0.0001;
0.00001. For low values of Da, computations become inaccurate. The most reliable results are found for Da greater

than or equal to 0.001, hence are reported in this work.

4.1.7. Values of @, and €,

For n = 2, values of @, and €,, given by equations (26) and (44), have been calculated for various values of 4, ,and 45,
and for choices of layer thicknesses and Darcy number. These values are given in Table 3.

Table 3. Values of A,, @, e, and A, for choices of layer thicknesses and Darcy number

Da=1 Da=0.1 Da=0.01 Da=0.001
Da
n=1/3 0.707107 22360689 7.071068 223606797
=218 — 1 3.162278 10 31622777
@ | 2063033440 | 4024305770 | 7.156340002 | 12.72507224
¢, | 5056317063 | 1508947849 | 0.5056317063 | 0.1508947848
=114 | 4, | 07071067810 | 2236067977 | 7.071067814 | 22.36067977
s=38l4 1 3.16227766 10 31.62277660
| 1847750066 | 3.285831902 | 5843127218 | 10.30071282
¢, | 7584475505 | 2398421774 | 0.7584475501 | 0.2398421774
7=049 | ;4 | 0707106781 | 2236067977 | 707106781 | 22.360679
£-051
7 1 31622777 10 3162277660
| 9238705328 | 1642915950 | 29.21563600 | 51.05356410
¢, | 0.3033790241 | 0.09593687104 | 0030337902 | 0.009593687
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4.1.8. Values of z,yl ,1//2, and 1//3

Parameters ! W 2 W 3, defined by equations (47), (48), and (49), respectively, have been calculated for choices of
layer thicknesses and Darcy number, and presented in Table 4.

Table 4. Values of 1//; ,l//j Y zand for choices of layer thicknesses and Darcy number

Da=1 Da=0.1 Da=0.01 Da=0.001
Da

7=1/3 | | 0.0373701421 | 1666922028 | 2964253120 | 5271270291
2

€=2/3 |~ 7704418847662 | 0.7857945612 | 1397362325 | 2.484900651
2
,° | 4739686150 | 2665321300 | 1498820363 | 0.842848628
2

7=1/4 | ' | 07653668644 | 1361036136 | 2420302538 | 4.303074169
2

=814 = 707325378160 | 1302656917 | 2316487974 | 4.110362868
2
,/° | 5804906304 | 3.264336704 | 1835672552 | 1.032274536
2

7=049 | ' | 3826834321 | 6.605180677 | 1210151269 | 2151987084
2

£=051
7 | 1690372911 | -3.005055342 | -5.34542849 | -0.50566543
2
»° | 1160981262 | 06528677410 | 0.367134510 | 0.206454907
2

4.2. Calculations of A,,B,, and Z, using the selected parameters

In order to calculate the arbitrary constants appearing in the velocity profile and shear stress terms, as shown in the next

subsection, we need values OfAZ(l//lr) + t//z), B, (t//ln + wz),Zz (l//ln + WZ),A’Z (l,//ln + l//z), B, (l//lr/ +
n n n n n n n n n

W n2, Z2'y nlp+y n2 A2y nléi+y n2B2Y nli+y n2 22y nlé+y n2, A2y nli+y n2 B2y nlé+y

72,22y n1é+y n2. These are the generalized Airy’s functions 42 and £2 and their derivatives, and the integral

function Z, and its derivative. They are calculated and tabulated in Table 5(a-d) for different Darcy number and layer
thicknesses. Table 5(a-d) illustrate the extreme increases in these functions with decreasing Darcy number.

Table 5(a). Values of 4, (y/ln + 1,1/2),32 (l//ln +y 2),22 (z,yln +y 2), for
n n n n n n
choices of layer thicknesses and Darcy number

Da=1 Da=0.1 Da=0.01 Da=0.001
Da
n=1/3 A, 0.146833896 0.065058886 | 0.0072952886 0.00001186707
£=2/3
) 0.8917209197 | 1.353810836 6.560838905 2238.232882

Z, -0.064732692 -0.22516722 -1.629536185 -572.2841478
n=1/4 A2 0.1194469599 0.38374950 0.001603171 | -632939378610°’
£=3/4
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B, | 0-9861568103 | 187457561 | 24.16709524 | 9229602011 10°

Z,| -0.098410257 | -0.38374%5 | -6.149544169 | _3 350930057 10°
n=049 | A | 02525057430 | 0.2246758878 | 0.1767009278 | -0.1410989080
£=051

B, | 0-6491680997 | 0.705837001 | 0.8118996417 | 0.7319688512

Z,| -0.00384248 | -0.012155268 | -0.038572894 | -0.2617292710

Table 5(b). Values of 45 (v 'n+ v ), B (v n+y )8y (win+ v?).z(win+v?)

for choices of layer thicknesses and Darcy number

Da=1 Da=0.1 Da=0.01 Da=0.001
Da
n=1/3 A; -0.16918615 | -0.106082395 | -0.018777713 | 0.00005168606
£=2/3
B. | 0.505416316 | 1.252151498 | 13.96538664 9218.246192
2
7.| -0.17531794 | -0.405704412 | -3.616131622 -2357.032801
2
n=1/4 A; -0.15337583 | -0.072464982 | -0.00493826 | -¢.3293937861077
£=3/4
Bé 0.618068962 | 2.332985064 | 65.95405078 | 929602011 10°
22 -0.22330147 -0.67764337 | -16.88836506 | -2 359930057 10°
n =0.49 AQ’ -0.194481221 | -0.192186413 | -0.181465281 | 0.05242814112
£-051
B. | 0.3913894107 | 0.398025786 | 0.439994757 1.536320030
2
1
7. | -0.041594038 | -0.074043431 | -0.133052950 -0.2827885351
2

Table 5(c). Values ofAz(w:lf+ z,//:),Bz ('//:{f-i_ wz),zz(wif+ y/i) for

choices of layer thicknesses and Darcy number

Da=1 Da=0.1 Da=0.01 Da=0.001
Da
n=1 /3 A2 0.09860649264 | 0.022958640 | 0.00036135186 1.2408.10 2
£=2/3
) 1.08432681 2.671724523 92.60297902 1.5122.107
Z2 -0.1336877333 -0.60691222 -23.65660180 -3.8666.10°

’
2
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n=1/4 A, 0.06882950752 | 0.0085424722 | 0.000019070 | 1389871909107 '3
£=3/4

B, 1.311585931 5.762401534 1430.166960 | 1102188867 10!

Z, -0.211393401 | -1.422479637 | -365.6678926 | _5 81820234110'°
n=0.49 A, 0.2376530136 | 0.1987990539 | 0.1348769032 0.05242814112
£=051

B, 0.6792099139 | 0.7609573701 | 0.9295310212 1.536320030

Z, -0.007685874 | -0.024338882 | -0.078047397 -0.2827885351

Table 5(c). Values of for 4 (¢ + v * ), B3 (v '+ v ).z (v e+ y ) for

choices of layer thicknesses and Darcy number

Da=1 Da=0.1 Da=0.01 Da=0.001
Da
n=1/3 A, 0.138?.08130 -0.048745809 | -0.0012695536 -7.5455.10°
£=2/3
B'2 0.764991842 | 4.131067844 297.5344403 8.943.107
2
7| -0.271968597 | -1.126644226 | -76.09151575 2.866.107
) .866.
n=1/4 A; -0.110173205 | 0.021493363 -0.00008101 | —1.030518166107!2
£=3/4
82 1.170681799 | 11.84969502 5727.255599 | 2 022071186 10""
7 | -0.38451116 | -3.07820516 | -1464.417065 | _> 05117475510"
2
n =0.49 A -0.193542157 | -0.18764106 | -0.162856903 -0.09130406
£=0.51
Bé 0.393949673 | 0.4139467720 | 0.5464133085 1.617581823
8
7. | -0.058843424 | -0.105079381 | -0.194740018 -0.49876870
2

4.3. Calculations of Values of Arbitrary Constants of Equation (6.40)

In order to determine velocity profiles and shear stress values, we must determine the arbitrary constants by solving
equation (40). This requires using data in tables (Table 1 to Table 5) in equation (40) to obtain a system that can be

solved numerically to calculate the values of the constants &,,d,,b,,b,,C;,C, . The values of the constants are

tabulated in Table 6 for different layer thickness and Darcy numbers. Table 6 shows that some of the arbitrary
constants attain extremely large values as Darcy number falls below 0.001, which implies unboundedness of the
solution for the indicated small values of Da.
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Table 6. Values of arbitrary constants, a,,a,,b,,b,,c,,c,, for
choices of layer thicknesses and Darcy humber

Da=1 Da=0.1 Da=0.01 Da=0.001
Da
n=1/3 | g 5.7.10°
£=2/3 -0.66445477 | -0.0237808 | -0.000218047
B a
? | -1.33554522 | -0.17621915 | -0.019781952 | 01999943
b
' | -3.18353222 | -1.8007126 -1.1623545 | -11.975
b
2 11.007705907 | 0.40141850 0.12928970 | 0.040883726
C, - -0.00415849 | 4 5565.1077 | -1.8477.107
0.27000450
C
2| -0.72320342 | -0.0415384 | 0.80453040 | . 27054064
n=1/4 | a -
£-3/4 ' | 0.66458477 | -0.024066376 | -0.0002875593 | 0.000082
a
| -1.3354150 | -0.17593362 | -0.019712441 | -0.002082
b
' | -6.4488795 | -4.2025049 -4.7571927 | -3260
b
> | 1.6270872 | 0.60731433 0.19392830 | 0.061325704
C
' | -0.27007734 | -0.004168687 | 45654155107 -1.8467278.10°%
C
? | -0.72266492 | -0.035850304 | 1 2168351 31012
7=049 | a
£=051 ' | -0.66443581 | -0.023627378 | -0.0001697113 -8.1828222107°
a
? | -1.3355642 | -0.17637261 | -0.019830290 | (019999919
by
0.16465943 | 0.11627925 | 0.025133581 | g 00064329179
b,
0.11637518 | 0.064325002 | 0.013158060 | g (00064329179
C
" | -0.26991787 | -0.004147873 | 45512428107 -1.8467279107"
c, | 07238436 | -0.047466486 | 054580252 3127.5428

4.4. Dimensionless Permeability Distribution

Permeability distributions for various values of n, Da, and thickness of the middle layer are illustrated in
Figures 2 and 3. Fig. 2(a,b) illustrate the effects of increasing n on the permeability distribution in the
variable permeability layer. Both graphs show the relative increase in permeability as n increases, for a given
middle layer thickness and a given Darcy number. Effects of increasing Darcy number on the permeability
distribution, for a given middle layer thickness and a given value of n, are illustrated in Fig. 3(a,b). These
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figures show the expected increase in permeability with increasing Darcy number.

Perm eability Di stribati on

14
9
0.8+
0.6 1

¥

044
0.2

] — T T T T T T T 1 1

0 0.5 1 1.5 2

Ky
| n=l seee n=4 — — n=9|

Figure 2(a): Permeability distribution Da=1,77 = 0.1, £ = 0.9, a=2,b=1
and different values of n.
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Figure 2(b): Permeability distribution Da=1,7 = 0.25,& = 0.75, a=10,b=1,
and different values of n.

Page | 14



International Journal of Enhanced Research in Science, Technology & Engineering
ISSN: 2319-7463, Vol. 5 Issue 6, June-2016

Permeability Di stribati ot

0.8

0.6

-
— —

0.4+

—
el
1

= i
B e —

os 1 1.

3 2
K*(y)
|—— Da=1 - Da=0.1 — — Dz=0.01|

1 2
Figure 3(a): Permeability distribution n=2,7 = 5 &= § ,a=2,b=1

and different values of Darcy number.
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Figure 3(b): Permeability distribution n=5,7 = 5 &= 5 ,a=2,b=1

and different values of Darcy number.
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4.5. Velocity and shear stress computations at the interfaces between layers

Velocity and shear stress at the interfaces between the layers take the following forms:

w(n)=bidn (v n+ v’ )+bB (v n+ v )+ez(vin +v?) (62)
w, (&) =bidn (v &+ u?) 4B, (v S+ y?)rezi (v & +y?) 63)
duzdgﬂ) ZblwlAn'(l//:lﬂ + Wi)+b2w;Bn'(wl77 + y/i)+ ‘//zZ"’(‘//in + ;//i) (64)
duzd(yé) =by Al (v S+ v ) +bw B (Wi +y )+ vin (viE+y?) (65)

Table 7(a) illustrates the velocity values at the lower and upper interfaces. This Table shows that for all choices of &
and n the velocity values at the interfaces are very close to each other numerically whether the velocity expression

used is that of the middle layer or that of an outer layer. This is true for high values of Darcy number. As Da reaches
0.001, inaccuracies start taking place and are caused by inaccuracies of computations and approximations of the Airy’s
functions, which in turn influence the computations of the arbitrary constants involved.

Similar conclusions are reached from Table 7(b), which illustrates the shear stress values at the lower and upper
interfaces and shows that inaccuracies start at Da = 0.001.

Table 7(a). Velocity at the lower and upper interfaces

Da=1 Da=0.1 Da=0.01 Da=0.001
Da
n=1 /3 U1(77) 0.1038331 0.06626168 0.015824149 0.0019004595
£=213 | o)
2\ 0.10383300 0.06626168 0.01582413 0.001903
u,($)
0.10279805 0.06071672 0.010665 0.01
u
3 (5) 0.10279806 0.060716722 0.010665830 0.00099997336
n=1 14 U1(77) 0.0878745 0.05731534 0.014950363 0.023950278
£=3/4
u, (77)
0.08787390 0.05731529 0.0149505 0.024
u, (&)
0.0868835 0.0519834 0.00985 13400.
u
3 (5) 0.08688353 0.051984085 0.009847566 150.28669
n= 0.49 U1(77) 0.1159588 0.07036197 0.013953930 0.0015307718
£=0.51
u
2 (77) 0.11595878 0.070361970 0.013953930 0.0015307713
u,($)
0.11584326 0.069729793 0.013252970 0.0013097894
u
3 (é") 0.11584326 0.069729790 0.013252969 0.0013097907
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Table 7(b). Shear stress at the lower and upper interfaces

Da=1 Da=0.1 Da=0.01 Da=0.001

Da
n=1/3 dul(n) 0.1513468697 0.07494555 -0.003034054 -0.00217397
£=2/3 | dy

du

-a;é(n) 0.1513468658 0.0749456 -0.0030338 -0.0021

du

-aji(i) -0.154591939 -0.0923160 -0.01383 0

du

-aji(f) -0.154591941 -0.092315967 -0.013819155 | _§3033708 10”7
n=1/4 | du, 0.2304745740 0.13081715 0.011885128

— () -0.00135703
£=3/4 | dy

du

-a;i(n) 0.230474552 0.130817149 0.011885174 -0.001384668

du

-a;l(f) -0.230391214 -0.130681377 -0.014963072 -4099.43426

du

-aji(f) -0.230391213 -0.130681378 -0.014963467 66.4174053
n=049 | du, o 0.0034674657 -0.026184815 -0.03398034 ~0.01049068
=051 dy

du

-ajl(ﬂ) 0.00346747194 -0.026184815 -0.03398034 -0.010490688

du

-a;l(f) -0.0148268056 -0.035881143 -0.03402269 -0.009796469

du

-aji(f) -0.0148268147 -0.035881143 -0.03402269 -0.097964695

4.6. Mean velocity across the layers

The mean velocity across the layers is defined as:

T=0,+0,+0, =

O 3

& 1
u,dy + qudy + I u,dy (66)
z

n

where Uy, Uy, U3 are the mean velocities in layers 1, 2, and 3, respectively. Mean velocity calculations are illustrated for
Da =1 and different layer thicknesses in Table 8. This Table clearly shows the highest mean velocity being across the
variable permeability layer for large thickness. This is due to the high flow rate in the middle layer, where a high
permeability is associated with this layer. When the middle layer is thin, Table 8 shows a decrease in the mean velocity
across this layer due to the fact that permeability does not remain high enough to influence the mean velocity.
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Table 8. Mean velocity across each porous layer and across the channel.

n=1/3 | g, | 0020295189 [ ,=1/4 | g, | 0012253769 [ ;=049 | g, | 0.037616843
=213 £=3/4 =051
. | 0.080326876 0. | 0.139845711 0. | 0.0023977597
2 2 2
. | 0.020028615 Q. | 0.012098218 Q. | 0.037401303
3 3 3
0 | 0.120650682 0 | 0.164197699 0 | 0.077615907

4.7. Velocity profiles across the layers

Velocity across the three layers is illustrated in Fig. 4(a-c) for different values of n, Da and a and b. For Da = 1, the
velocity profile possesses a parabolic shape (Fig. 4(a)) that is lost with decreasing Da. As the product bDa decreases,
or equivalently permeability in the upper layer decreases, and the product aDa increases, or equivalently permeability
in the lower layer increases, velocity across the upper layer decreases and velocity across the lower layer increases,
causing a loss in the parabolic velocity profile. This is true when Da decreases and assumes values below unity (Figs.
4(b,c)).

When Da = 1, the parabolic velocity profile is due to the dimensional permeability approaching infinity, and the flow is
less affected by the introduction of a porous layer. The effect of increasing n is also illustrated in Fig. 4(a-c), which
demonstrate the increase in velocity in the middle layer with increasing n. Numerically, this is attributed to increasing
permeability due to increasing n (as can be seen from equation (2), where the denominator is less the numerator, and
the ratio in the permeability expression is greater than unity and increases by taking higher powers). Velocity in the
middle layer and its dependence on n are further illustrated in Figs. 5(a-c), which show the increase in velocity due to
increasing permeability with increasing n, for given Da, a and b. Loss of parabolic shape with decreasing Da is also
explained in terms of decreasing permeability in the upper bounding layer, which results in a slower flow in the upper
part of the middle layer.

Da=1,a=50,b=1

038

0.6
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02

0

0 0.02 0.04 0.06 0.08 0.10 0.12
u(y)

| = n=l o n—6|

1 2
Figure 4(a) Velocity Profile u(y) ,for Da=1, n1 = 5 &= § , a=50,b=1, different values of n.
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Figure 4(b) Velocity Profile u(y) ,for Da=0.01, 17 = § &= § , a=2,b=1, different values of n.

a=15b=1,Da=0.01

0.8

0.6

1 2
Figure 4(c) Velocity Profile u(y), for Da=0.01, 7 = 5 &= § , a=2,b=1, different values of n.
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Figure 5(a) U,(Y), Da=1, 7 = 3’ &= 3 a=50,b=1, and different values of n.
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Figure 5(b) U,(Y), Da=1, 7= §,§ = 3 a=2,b=1, and different values of n.
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a=15b=1, Da=0.001
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Figure 5(c): U, (Y), for Da=0.001, 77 = §,§ = 3 a=15,b=1, different values of n.

5. CONCLUSION

In this work we considered the flow in a layered porous configuration, consisting of three layers the middle of which is
of variable permeability. The bounding upper and lower layers are of constant permeability. This is the same
configuration as that of the problem in [1] but with a permeability distribution in the middle layer that results in a
generalized Airy’s equation as the governing differential equation in the middle layer. This problem is undertaken to
illustrate the effects of changing the power on the permeability expression (that is, the value of n) on the flow
characteristics. The main conclusion reached here is that with increasing n, permeability in the middle layer increases
and results in a corresponding increase in velocity.
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31
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