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ABSTRACT 

 

When it comes to operational research, we necessarily cross on our way the Traveling Salesman Problem (TSP).  

It is characterized by its simple appearance and its statement that does not demand a lot of mathematical 

knowledge to understand and a high level of reflection in order to find one of its solutions, it can be seen as a 

simple problem of a commercial traveler seeking the shortest tour to gain more energy and time and to have 

more money, but the TSP has a great importance in the formulation of complex problems. In this work we are 

interested to do a comparative study between the various formulations of the TSP: DFJ (Danzig-Fulkerson-

Johnson), MTZ (Miller-Tucker-Zemlin) and DL (Desrochers-Laporte). For this we have made the resolution 

with exact methods. 
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1. INTRODUCTION 

 

The Combinatorial optimization problems (COP) are of considerable importance in the scientific and industrial world, 

among the best-known problems in COP, we can cite the traveling salesman problem (TSP). It was studied in the 18th 

century by a mathematician from Ireland named Sir William Rowam Hamilton, his statement is as follows: "a traveling 

salesman must visit once and only once a finite number of cities and return to its point of origin, find the order of cities 

visited that minimizes the total distance traveled by the traveler "(Fig.1). This problem was also treated by the British 

mathematician named Thomas Penyngton Kirkman, detailed discussion about the work of Hamilton & Kirkman can be 
seen from the book titled Graph Theory, Biggs et al [1]. It is believed that the general form of the TSP have been first 

studied by Kalr Menger [2] in Vienna and Harvard. The TSP was later promoted by Hassler, Whitney & Merrill at 

Princeton. A detailed description about the connection between Menger & Whitney, and the development of the TSP can 

be found in (Schrijver, [3]). The study of this problem has attracted many researchers from different fields, e.g., 

Mathematics, Operations Research, Physics, Biology, or Artificial Intelligence, and there is a vast amount of literature on 

it. 

 

Hundreds of articles and several books have been written about the TSP. In particular, the three books of Lawler et al. [4] 

listed nearly 600 references. Gutin and Punnen [5], Applegate et al. [6], Jünger et al. [7] provide a wealth of information 

on this problem. Many formulations of the TSP can be found in the literature for example, those of Orman and Williams 

[8],Oncan et al. [9].Also those of Danzig et al. [10] are the first formulations of the TSP. In 1998, basing on the 
demonstration of Papadimitriou [11],Arora showed that the TSP Euclidean is part of NP-hard optimization problems[12], 

if the number of cities increases, the complexity becomes extremely important .This complexity did not facilitate his 

study and if you analyze all the possible routes, for n cities, the number of possibilities is of (n-1)! , for 6 cities we have 

120 possibilities, for 10 cities we have more than 362 000 possibilities, and for 60 cities we have 1080, is the number of 

estimated atoms in the universe. This may explain why the problem has not been studied seriously before the arrival of 

computers in universities, but many researchers have treated it since the 20th century.  

  

In the reality, the TSP is the basis of the all routing problems and has a multitude real-world application, Lenstra and Kan 

[13], Reinelt [14] cited a set of direct and indirect applications of the TSP in several industrial and technological fields. A 

classic example for these applications is the scheduling of a machine to drill holes in a circuit board or other object.   In 

this case the holes to be drilled are the cities, and the cost of travel is the time it takes to move the drill head from one 

hole to the next.  The technology for drilling varies from one industry to another, but whenever the travel time of the 
drilling device is a significant portion of the overall manufacturing process then the TSP can play a role in reducing costs. 

This problem can be also useful in crystallography to minimize time used to take measures to the X-ray [15]. 
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Figure 1: Solution of the traveling salesman problem: the red line is the shortest path that connects all the black 

points (cities). 

 

2. DESCRIPTION OF TRAVELING SALESMAN PROBLEM: 

 

The TSP is defined on a complete and directed graph G= (V, A), because we treat Asymmetric TSP (ATSP) (See section 

3), the set V = {1 . . . n} is the vertex set (cities) with n is the number of cities, and   , : , ,A i j i j V i j   is an 

arc set; a cost matrix dij  is defined on A. The cost matrix
i j

d  satisfies the triangle inequality whenever
i j ik k j

d d d  , 

for all i, j, k. In particular, this is the case of planar problems for which the vertices are points  ,
i i i

P x y  in the plane, 

and    
2 2

i j i j i j
d x x y y    is the Euclidean distance, the triangle inequality is also satisfied if 

i j
d is the 

length of a shortest path from i to j on G. The TSP then returns to the search for a Hamiltonian circuit (closed path 

passing exactly once by each vertex of the graph) of minimum length in G. In general, the TSP can be formulated by 

associating to each arc  ,i j  of the visited city  1 to  n  , j = 1  to  n  , i ji    a binary succession variable 
i j

x , which 

takes 1 if city j is visited immediately after city i in the tour and which otherwise takes  0 , with  N i
  that are the 

successors of i.The basic idea to formulate mathematically the Traveling Salesman Problem consists , starting from, a 

problem of assignment: each city i is assigned to city j which must follow it in the tour , then we get the formulation: 
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In this formulation, (1) defines the objective function , the constraints (2) and (3) reflect that each city should be visited 

exactly once, (4) is an integrality constraint. This formulation is not valid in the sense that a solution does not match 

necessarily to a complete tour :  In general it consists  in several cycles (subtours) , it is obligatory to supplement this 

formulation so as to prohibit subtours, this can be done conventionally in two ways, which were proposed respectively by 

Danzig, Fulkerson & Johnson [16] , who were among the first to do the modelling and on other side Miller, Tucker & 

Zemlin [17] have rewritten the problem in a different way, to get two formulations of the TSP: the DFJ Formulation 

(Danzig, Fulkerson, & Johnson) and the  MTZ formulation (Miller, Tucker &Zemlin), after a few years Desrochers and 

Laporte have strengthened  the MTZ formulation by proposing the formulation DL [18]. 

 

3. CLASSIFICATION OF TRAVELING SALESMAN PROBLEM: 

 
Broadly, the TSP is classified as Symmetric Travelling Salesman Problem (STSP), Asymmetric Travelling Salesman 

Problem (ATSP), and Multi Travelling Salesman Problem (MTSP) [19]. The STSP is the problem of finding a minimal 

length closed tour that visits each city once; in this case there are some arcs  ,i j  which belong to A, for which 
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ij ji
d d ,if for at least one  ,i j ij ji

d d , then the TSP becomes an ATSP, the MTSP consists of finding tours for 

all m salesmen, who all start and end at the depot, such that each intermediate node is visited exactly once and the total 

cost of visiting all nodes is minimized. Possible variations of the problem are as follows: Single or multiple depots, 

Number of salesmen, Timeframe, Other constraints…etc. For each variation we obtain a new variant of the TSP for 

example when some nodes need to be visited in a particular time periods that are called time windows which are an 

extension of the MTSP, and referred as multiple traveling salesman problem with specified timeframe, in this case we 

have a MTSPTW (Multiple Traveling Salesman Problem with Time Windows) [20]. 

 

4. MATHEMATICAL FORMULATIONS OF TRAVELING SALESMAN PROBLEM: 

 

A. The Danzig-Fulkerson-Johnson formulation: 

 

The DFJ formulation and many ATSP formulations consist of an assignment problem with integrality constraint and  

subtour elimination constraints (SECs) [10], they use a binary variable 
i j

x  equal to 1 if and only if arc  ,i j  belongs to 

the optimal solution and otherwise it would be equal to 0, S is the sub set of vertices (cities) in the sub tour. The basic 

model is as follows: 
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(5) represents the objective function, (6) and (7) represent the assignment constraints, (8) is the subtour elimination 

constraints (9) is a integrality constraints. This formulation becomes difficult in practice, as soon as the size of the model 

increases, and it is due to the exponential number of subtour elimination constraints generated, this formulation of the 

TSP contains  1n n  variables and   
1

2 2
n

n


   constraints. 

  

B. The Miller -Tucker-Zemlin formulation:  

 

This formulation was originally proposed by Miller et all, for a traveling salesman problem , where the number of 

vertices of each route is limited [17], they use one binary variable 
i j

x and for each arc  ,i j A , 
i j

x which takes 1 if the 

city j is visited immediately after  i in the tour , otherwise it takes 0, they uses 
i

U variables to define the order in which 

each vertex i is visited on a tour, so the  MTZ formulation of the TSP is : 
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(10) Represents the objective function, (11) and (12) are the assignment constraints, (13) is the integrality constraint, (14) 

are the subtour elimination constraints, (15) is the integrality constraint. This TSP formulation contains    1 1n n   

variables, and  
2

2n n   constraints.  
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C.  The Desrochers-Laporte formulation:  

 

Among the advantages of the MTZ formulation is that the subtour elimination constraints (14) and (15) can be 

incorporated into other types of problem formulations together with stronger constraints [18]. Motivated by these facts, 

Desrochers and Laporte have lifted subtour elimination constraints (14) and (15) to obtain the stronger forms: 
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(16) is the objective function, the assignment constraints (17) and (18) ensure that each city is visited one and only 

once, (19)and (21)  are the integrality constraints, (20) is the subtour elimination constraints . 

 

5. SOLUTION METHODS FOR THE TRAVELING SALESMAN PROBLEM  : 

 

The methods of solving the TSP can be divided into two classes: the exact methods and approached methods, the exact 

methods make it possible to find the optimal solution, but their complexity is exponential, approached methods 

(Heuristic) get good solutions but give no guarantee on the optimality of the solution. In our case, for the resolution we 
used exact methods [21] , using a Integer Linear Programming Solver (ILP-Solver) , CPLEX version 12.6.3 which by 

default uses the Branch and Cut method , it is an accurate method for solving problems of linear optimization in integers, 

where we use the method of separation and evaluation (Branch and Bound) and the cutting plane  method . 

 

The Branch and Bound method uses two concepts: the branching that divides a set of solutions into subsets, the 

evaluation which consists in limiting or diminishing the solutions, and the cutting plane method used to find an integer 

solution of a linear optimization problem, the principle of this method is to add constraints to the linear program to refine 

it, and to bring it closer to integral solutions [22]. 

 

For the resolution of the MTZ formulation, we used the method Branch and Cut and for the DFJ given the exponential 

number of constraint of the order 2n, it is necessary to proceed by generation of constraints [23] that consists to add to 
each iteration a set of subtour elimination constraints (SECs) until we find an optimal solution. First, we relax all SEC (8) 

from the model and solve the remaining ILP model. Then we check if the obtained integer solution contains subtours. If 

not, the solution is an optimal TSP tour. Otherwise, we find all subtours in the integral solution (which can be done by a 

simple scan) and add the corresponding SEC to the model, each of them represented by the subset of vertices in the 

corresponding subtour. The resulting enlarged ILP model is solved again to optimality (see algorithm 1). 

   

 

Input: TSP instance; 

 

Output: Optimal TSP tour; 

 

1: define current model did (5), (6), (7), (9); 
2: repeat; 

3: solve the current model to optimality by ILP solver. 

4: if solution contains no. sub tour then; 

5: set the solution as optimal tour; 

6: else; 

7: find all sub-tours of the solution and add the corresponding SEC into the model. 

8: end if; 

9: until optimal tour found. 

 

Algorithm 1: Main idea of generation constraints 
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6. RESULTS AND DISCUSSTION 

 

 Experiments were performed on a processor Intel® Celeron® CPU 847 of 1.10 GHz, 1.10 GHz with 4 GB Memory. The 

solution has been provided by IBM ILOG CPLEX version 12.6.3; we have developed programs in OPL language 

(Language Modeler of the CPLEX Solver). To compare the formulations MTZ, DL and DFJ we have generated small 

random instances similar to some of the TSPLIB instances to obtain 10 complete graphs from 7 to 45 vertices. These 
vertices have taken between 0 and 99 coordinates randomly; the distances between vertices are the Euclidean distances 

 (
i j

d ).  We have calculated the Continuous Relaxation Value (R) (obtained by relaxing the integrality constraints), and 

the Optimal Value (Vopt), with T(s) is the calculation time of the Optimal Value in second, (NC) is the number of 
generated constraints and n is the number of cities . Table 1 shows the results. 

 

Table 1: Comparison of formulations DFJ, MTZ and DL (Optimal Value (Vopt), Solution time T(s), Continuous 

Relaxation Value(R)) 

 

It is apparent from the results that: 

 

•    The Continuous Relaxation Value (R) of the DFJ formulation is better than that of the MTZ and the DL formulations            

(Fig.2). 

•    The Calculation time T(s) of the DFJ formulation is better than that of the MTZ and the DL (Fig.3). 

•    From 35 cities, MTZ and DL formulations become very slow in time calculation.( We determined a maximum    time 

to take our results 𝑇𝑚𝑎𝑥  = 10 min, after 10 min, the MTZ and DL formulation did not yet give an optimal solution) 

 

 

    
 

Figure 2.The Continuous Relaxation Value (R) of the         Figure 3. The Calculation time of the DFJ, MTZ and  

                 DFJ, MTZ and DL formulations                                                          DL formulations 

n 
MTZ DL DFJ 

Vopt R % T(s) Vopt R % T(s) Vopt R % T(s) NC 

7 282.29 207.79 73.60 0.71 282.29 274.74 97.32 0.49 282.29 282.29 100.00 0.26 10 

10 337.67 256.78 76.04 0.87 337.67 263.76 78.11 0.53 337.67 322.5 95.50 0.37 11 

18 406.8 340.71 83.75 2.94 406.8 360.98 88.73 2.13 406.8 406.15 99.84 0.39 27 

20 412.79 344.37 83.42 2.51 412.79 366.97 88.89 2.44 412.79 411.13 99.59 0.47 35 

26 469.45 397.37 84.64 41.16 469.45 439.57 93.63 27.79 469.45 439.57 93.63 0.57 38 

29 482.43 377.42 78.23 182.7 482.43 446.24 92.49 174.56 482.43 446.24 92.49 4.78 43 

31 502.54 404.38 80.46 187.1 502.54 478.39 95.19 180.16 502.54 483.61 96.23 2.32 53 

35 - - - - - - - - 518.961 494.99 95.38 3.71 58 

40 - - - - - - - - 532.448 505.00 94.84 7.64 88 

45 - - - - - - - - 537.68 527.00 98.14 11.2 68 
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CONCLUSION 

 

The study leads to the following conclusions: 

 

 The MTZ formulation is seductive because it is easy to implement but it gives a low continuous relaxation. 

 In practice it is more interesting to use the DFJ formulation, even this requires to implement the generation of   

constraints. 

 The DL formulation, although significantly strengthens the MTZ formulation, does not compete with the DFJ 

formulation. 

 

So finally we can say that in practice, the DFJ is better than that the MTZ and DL formulation. 
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