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ABSTRACT 
 

Some adaptive Kalman filtering schemes are first studied and fuzzy logic based approaches are evaluated for target 

tracking applications. Then, fuzzy logic based adaptation schemes are presented for an H infinity based filtering 

algorithm, and evaluated in the sensor data fusion application. The schemes are illustrated for simple and/or 

maneuvering target tracking applications with numerical examples implemented in MATLAB. Performance 

metrics and plots are presented.          
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INTRODUCTION 

 

Tracking of a moving object/target is a process of estimating the positions and other relevant information with applications 

as: i) determination of satellite orbit, ii) tracking simple and maneuvering targets, and iii) robotics, in the latter either a 

robot needs a tracking algorithm for its path and motion planning, and/or a robot itself is tracked by its user from a 

monitoring/control center. Usually, Kalman filter (KF) is used for estimation of the states of such an object using noisy 

measurements, and this provides an effective means of estimating the states of the system when it is well defined and the 

noise statistics are known [1]. However, in real life situations, often these noise statistics are not completely known. The 

optimal linear KF, for its successful application requires a good knowledge of process and measurement noise statistics, i.e. 

KF is (theoretically) optimal only if the system dynamics, and noise statistics are known accurately, in fact correctly, and in 
that case interestingly the KF is a conditionally optimal filter, since its performance depends on correct or good choice of 

these parameters. Depending on the application, uncertainty in any of these information can lead to filter divergence. In 

such cases, it is necessary to use some adaptive mechanisms in a KF. Here, we compare a few methods of adaptive tuning 

of KF: i) heuristic approach, ii) optimal estimation method, and iii) two fuzzy logic (FL) based methods [2]. Performance 

of these methods is evaluated using simulated target tracking data and some performance metrics. Then, we present FL 

based approaches to adaptively tune an H infinity (HI) filter, in the deterministic domain, that is an equivalent filter to KF. 

This FL-augmented/tuned HI filter is evaluated in a sensor data fusion application with simulated data. We find that in all 

the three, somewhat different applications considered and evaluated independently, FL based approach performs better 

than the other approaches.  

 

KALMAN FILTER 
 

KF essentially utilizes i) mathematical models of the dynamic system, described by difference or differential equations (in 

the state space form), ii) actual, and mostly noisy measurements of the dynamic systems, and iii) and the weighted sum of 

predicted state and measured data ( residuals) to generate optimal estimates of the states [3]. It has an 

algorithmic/recursive structure that is amenable to digital computer implementation. For the sake of brevity we only give 

equations for the discrete time KF. The state space model of a dynamic system in discrete domain is expressed by   

 

 ( 1) ( ) ( )x k x k Gw k            (1)  

 

 ( ) ( ) ( )z k Hx k v k            (2)  
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In (1), x is the state of the system, and w is a white Gaussian process noise sequence with zero mean and covariance matrix 

Q; and in (2), z is the observation vector, and v is a white Gaussian measurement noise sequence with zero mean and 

covariance matrix R;  is the state transition matrix, and H is the measurement model. Using the known model of the 

dynamic system, statistics Q and R of the noise processes, and noisy measurements z(.), properly tuned KF obtains the 

optimal estimates of the system states x. The discrete KF equations are given as  

 

Time propagation/evolution  

 

State estimate   )(ˆ)(~ kxkx  1               (3) 

 Covariance (a priori)  TT GQGkPkP   )(ˆ)(
~

1             (4) 

 

Measurement/data update 

 

Residual/innovations   ( 1) ( 1)  ( 1)e k z k H x k                (5)  

Kalman Gain   1 )
~

(
~

RHPHHPK TT              (6) 

Filtered estimate  ˆ( 1)  ( 1)  e( 1)x k x k K k                  (7)  

Covariance (a posteriori) PKHIP
~

)(ˆ                 (8) 

 

Kalman gain function/matrix can be also written as  

 

     1 SHPK T~  ; RHPHS T 
~              (9) 

 

In (9), S is the theoretical/predicted covariance matrix of the residuals. The actual residuals can be computed from the 

measurement data update cycle by using (5), and their standard deviations (or absolute values) can be compared with the 
standard deviations obtained by taking the square roots of the diagonal elements of S, i.e. from (9). Any mismatch between 

these two quantities indicates that the performance of the KF is not satisfactory, since the filter is not tuned properly.    

 

HEURISTIC METHOD 

 

As we can easily see that the KF performance is dependent on the comparative magnitudes of the Q and R matrices, rather 

than on their (fixed) absolute magnitudes, this can be seen by combining (4) and (9), and this aspect can be specified as a 

ratio defined as norm (Q)/norm(R). This property of the noise statistics can be employed to take a practical advantage in 

real applications where a good estimate of the measurement noise covariance R can be obtained from manufacturer’s 

sensor specifications and laboratory calibrations; then, using this value of R, the Q can be approximated by selecting a 

suitable proportionality associated to R using a heuristic method/approach (HM). Assuming a constant R value, the 

simplest form for Q would be via a constant proportionality factor 1q  so that we have [2]  

 

          RqQ 1           (10)  

In (10), 1q  could be determined using the data from extensive experiments on the system and based on analysis and 

engineering judgment. For a typical target tracking application based on analysis of a series of flight test data of the target 

collected by distributed sensors, the following form for Q can be used [2] 
2

1 2exp( ) ;      1,2, ,k kQ q R q k t k N    
 

    (11) 

 

In (11), as Nk  , the term  )exp( 2 tkq small value and the effect of Q on the estimation reduces. It would be 

necessary to tune only the two values of 1q  and 2q . One may arrive at a different form for kQ  depending on the 

application and analysis. The HM is computationally simple and might work well for many applications. But, it requires 

studies with large amount of post flight/operations/experimental data.   

 

OPTIMAL STATE ESTIMATE BASED METHOD 

 

This method is based on the aim to optimally improve the state estimation performance, under the conditions discussed in 

the introduction [3]. Assuming a steady performance over the most recent Nw samples or sampling times (a sliding 
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window), unique estimate of K and Rm can be obtained even if a unique estimate of Q is not obtained. If matrix    is chosen 

as one of the parameters to be estimated, then an estimate of      is obtained using (see (9) also)   

 

         = 
 

   
        

        (k)                    (12) 

 

In (12), e(k) are the residuals. Once (12) is computed, the following equations [3] are utilized in the given sequence to 

determine the optimal Q (assuming that matric G is invertible)   

 

TT
cc

cc

T
c

GPPGQ

PKHIP

HSKP











)ˆ~
(ˆ

~
)(ˆ

)(ˆ~

1

1



       (13) 

 

FUZZY LOGIC BASED APPROACHES 

 

The FL approach is based on the principle of covariance matching, i.e. the matching of the theoretical and actual 

covariance matrices/values [4,5]. Here, the estimates of actual residual covariance are computed from using the filtered 

residuals as in (12), and the theoretical/prediction values, (9) (as provided by the KF) are compared and the covariance of 

process noise Q is tuned until these two agree in some sense (say norm, or individual diagonal terms). FL is then used to 

implement the covariance matching method for adaptation; utilizing this technique, Q and R matrices can be adaptively 

tuned with a fuzzy inference system (FIS). FL allows for a degree of uncertainty and gradation as against the crisp logic 

that is based on yes (say, 1) or no (say, 0). FL is a multivalued logic, and the characteristic function is generalized to take 

an infinite number of values between 0 and 1: e.g. triangular form as a (fuzzy) membership function (MF) as shown in 
Figure 1 which also depicts a typical FIS.    

 

 
 

Figure 1 FIS with fuzzy membership function (triangular) 

  

The constants in the MF define the shape and size of MF, and y-axis represents the membership value/grade of belonging 

of the input variable u, to the fuzzy set. FL can model any continuous linear or nonlinear function or system, and it is ‘If…, 

Then’ rule based system, Figure 1. In a FL based system, each input partially fires all rules in parallel and the system acts 

as an associative processor as it computes the output. The system then combines the partially fired ‘Then’ part fuzzy sets in 

a sum and converts this sum to a scalar or vector output, and hence it is called fuzzy associative/additive system, the core 
of every FIS. The FIS performs an exhaustive search of the rules in the knowledge base/rule base to determine the degree 

of fit for each rule for a given set of causes. The I/O are crisp variables. The several rules contribute to the final result to 

varying degrees. Any process that is to be fuzzified, is passed thr’ the FIS, and the defuzzified output is then used for 

further processing: i) predictive analysis, ii) control, and/or iii) estimation. Then any system that uses this process and FIS 

is called FL based system.  

 

As described in the previous section/s, if there is any discrepancy between the theoretical covariance and the actual 

statistical analysis of the innovation sequence, FIS can be used to adjust a based on the size of the discrepancy, and Q or R 

is tuned in such a manner as to reduce this discrepancy using FIS. This approach has the merits: i) it is simple in its 
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formulation, ii) it is able to handle inaccurate information, iii) it is able to include any heuristic/acquired knowledge about 

the system, and iv) it relaxes some of the a priori assumptions on the noise processes. 

 

FIS for R with known Q 

 

In this case, the adaptation/tuning of R is carried out assuming Q is known; large values of R imply inaccurate 
measurement data. In such a case, we give less weightage to the measurements and higher weightage (of course relatively) 

to the prediction in the KF. Thus, we have the theoretical covariance of the innovation given by  

 

)()()(
~

)()( kRkHkPkHkS T               (14) 

 

The actual/sample covariance of the innovation is computed by using a moving average across a window as in (12). The 

window size is chosen empirically to give some good smoothing, on the average. The difference between (12) and (14) is 
used to derive adjustments for R based on its actual value as follows, a variable called degree of matching (DoM) is 

defined to get the size of the difference  

 

                                (15) 

 

The DoM is used by an FIS to derive R values. From (14) it is clear that increasing R increases S. Hence, R can be varied 

to reduce the DoM value as [5] 

 

Rule 1: If         ,                 are nearly equal, then maintain R  at the same value.  

Rule 2: If         , means that            , then decrease R. 

Rule 3: If         , means that            , then increase  R. 

 

The adaptation of        is equivalent to the adaptation in         . The FIS generates tuning of R by creating a correction 

factor       to be added or subtracted to all the diagonal elements of the R matrix at each instant of time using 

 

                                (16) 

 

So, it is clear that        is the input to the FIS and       is the output which is generated sequentially.  

 

FIS for Q with known R 
 

If the large values of Q occur, these imply large uncertainties in the process model and hence, less weightage should be 

given to the predicted value of the state and more weightage to the measurement data. By incorporating (4) into (14) we 

can re-write (14) as 

 

                                                  (17) 
 

It is assumed that      is known, then it is clear from (17), that if Q increases, S also increases. This mismatch between 

               can be used to create a correction term using a similar procedure as for estimating R(k) and adapting the 

value of Q using the rules [5] 

 

Rule 1: If         ,                 are nearly equal, then maintain Q  at the same value. 

Rule 2: If         , means that            , then decrease Q 

Rule 3: If         , means that            , then increase  Q   (18) 

 

For each element in the diagonal matrix Q, an FIS can generate the tuning factor, i.e.       is obtained and 
added/subtracted to correct the Q(k) value for each element in the main diagonal of the matrix Q as 

 

                         (19) 

 

If there is no direct correspondence between the dimensions of S, Q and DoM, empirical considerations can be used in the 

FIS to overcome this problem; using the preceding 3 rules, a typical fuzzy system for the input DoM and output    could 

be formulated as [5] 
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If   DoM is negative medium, then    = Increase Large. 

If   DoM is negative small, then    = Increase.  

If   DoM is zero, then    = Maintain. 

If   DoM is positive small, then    = Decrease.  

If   DoM is positive medium, then    = Decrease Large.                (20)  

 

In FL, the input variable DoM defines the universe of discourse      and the output variables    define the universe of 

discourse    . Commonly used membership functions are trapezoidal, triangular, Gaussian or their combination. A 

suitable defuzzification procedure is used to get the crisp values at each step.  

 

A specific FL approach 

 

Another specific, but similar approach (to one in section 5.2) is a obtained as in (17), but re-written as 
 

 S (k+1) =H  
   +R (k+1)= H {Ф    (k) Ф +   (k)}  +R (k+1)         (21) 

       

                          = H (Ф    (k) Ф +       (k))  +R (k+1)          (22) 
 

In (22),    (k) =        (k), where   (k) is a fixed a priori known covariance matrix. Then, current Q(.) is altered (in fact 

       at each sampling instant based on, if the innovation : i) is neither too near nor too far from zero, then leave the 
estimate of Q(k) almost unchanged, ii) is very near to zero, then reduce the estimate of Q(k), and iii) is very far from zero, 

then increase the estimate of Q(k). This is intuitively appealing since, it achieves the covariance matching. In fact, this 

mechanism would adjust the value of Q(.) in such a proportion so as to adjust the value of S(.) in (22), and hence, in turn 

match with the actual covariance of the residual, thereby achieving the covariance matching. This adjustment mechanism 

can be implemented using FL; at each sampling instant, the input variable (to FL/S-membership function) is given by the 

parameter 

 

   rs (k +1)= 
       

       
                        (23) 

 

In (23), r(k+1) is the actual innovation component and s(k+1) is the         value of S, then rs(k +1) gives the measure of 
relative amplitude of innovation compared to its theoretical assumed value. The following If . . . Then . . . rules can be used 

to generate output variables; the fuzzy rule based system has rs  as input variables and Ψ as output variables [4], with MFs  

of rs and Ψ denoted as mr and mΨ 

 

If rs is near zero, then Ψ is near zero. 

If rs is small, then Ψ is near one. 

If rs is medium zero, then Ψ is a little larger than one. 

If rs is moderately large, then Ψ is moderately larger than one. 

If rs is large, then Ψ is large.       (24) 

 

EVALUATION OF THE METHODS 
 

We evaluate the preceding adaptive filtering schemes using three illustrative cases.  

 

Non-maneuvering target  

 

In the first case, the moving target position data are considered for the three axis-x,y,z frame of reference using the state 

and measurement models having the form  

 

 x (k +1) = φx(k)+Gw(k)                                                                                             (25) 

 

             z(k) = H x(k)+ v(k)                                                                                   (26) 

 
The state vector x consists of target position (p), velocity (v) and acceleration (a) in each of the axes, x, y and z. The basic 

state transition matrix, process noise matrix and observation matrix for each axis that can be used for generating the 

simulated data are 
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Transition matrix φ = 
  

  

 

   
   

                               (27) 

Process noise gain matrix G=      

  

 

 
 

                                            (28) 

Measurement matrix H =                                                                                                          (29) 

 

The state vector x = [xp, xv, xa, yp, yv, ya, zp, zv, za], thus, for more states the models of (27)-(29) are put in a block diagram 

matrix for simulation. It is to be noted that (p, v, a) used as subscripts indicate the position, velocity and acceleration 

respectively. Process noise with σ= 0.001 (standard deviation) is added to the true data to generate the actual state 
trajectories. A low value of process noise variance yields nearly a constant acceleration motion. The noise variances in 

each of the coordinate axes are assumed equal. Position measurements in all the three axes are generated by addition of 

measurement noise with σ = 3.33. Measurements are generated for a duration of 100 sec. with T = 0.25 sec. An interactive 

GUI (graphical user interface) based MATLAB code is written for generating the simulated data as well the results of the 

adaptive KF schemes. It also computes the mean of residuals, percentage fit error (PFE), root mean square error position 

(RMSP) and root mean square error velocity (RMSV) errors. Table 1 gives the PFE for these four adaptive filtering 

methods: i) heuristic (HMQ), ii) optimal (OSQ), iii) FL based (FLQ), and iv) DoM (FL) based. The numerical values 

indicate that the performance of all the four adaptive filtering schemes is almost similar in terms of fit errors, however, it 

can be seen that the PFE from the fuzzy logic based method (FLQ) are lower. Figure 2 depicts the RSS (root sum square) 

position errors for the four methods. It is seen from Table 1 that the FLQ based method holds a good promise for adaptive 

KF, and should be further explored for other filtering methods.   

                         

Table 1 Position (%) fit errors for AKFs (Case 1) 

 

 

 

 

 

 

 

 

 

 

 

 

 
                                 

Figure 2 RSS position errors for the four adaptive KFs (Case 1). 

 

Tuning methods  x y z 

HMQ (Heuristic) 0.9256 0.3674 1.6038 

OSQ (Optimal) 0.9749 0.3873 1.6895 

FLQ (FL based)  0.8460 0.3358 1.4659 

DoM (FL based) 0.9840 0.3912 1.7046 
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Maneuvering target   

 

For the second case we have generated the target motion data in the Cartesian x-y frame of reference of a target moving 

with constant velocity which undergoes a coordinated turn during a portion of its trajectory [6]. The state vector x consists 

of target position and velocity in the x and y axes. The simulated data of a target moving in x-y plane with 4 states 

            are generated using initial conditions [0 0 10 1] for a period of 250 sec. with a sampling interval of 0.5 sec. 

The target is assumed moving with constant velocity till 24.5 sec., undergoes a coordinated turn during 25.0 to 50 sec. and 

continues with its constant velocity motion till 250 sec. The state and measurement models are given as 

 

a) constant velocity model  

 

 
 
 
 
      

       

      

        
 
 
 

  

    
    
 
 

 
 

  
  

 

 
 
 
 
    

     

    

      
 
 
 

 

 
 
 
 
 
  

   

  
  

  

 

 
  
 
 
 
 

           
    
    

 

 
 
 
 
    

     

    

      
 
 
 

          (30) 

 

b) Coordinated turn model 
 

For this model, the target is moving in the x-y plane with constant speed and turning with a constant angular rate. The 

position and velocity evolve along circular arcs. The circular motion can be described by the discrete state model with the 

same measurement model as equation (30) 

 

 
 
 
 
      

       

      

        
 
 
 

 

 
 
 
 
  

        

 
  

          

 

                   

 
 

          

 

        

 
        

 

          
 
 
 
 

 
 
 
 
    

     

    

      
 
 
 

                              (31) 

 

For simulation (the coordinated turn model), a turn rate of -5 deg./sec. and a process noise covariance of 1 are considered 

and while the target is in constant velocity motion the process noise is assumed to have a variance of 0.03. Measurement 

data of position along x and y axes are generated by adding measurement noise with covariance of 100. The known value 

of measurement noise covariance, R=100 is used in all the cases.  The target motion is assumed decoupled in the two axes 

in the adaptive KFs implemented and a constant velocity state model is used in the filters for estimation and the noisy 

measurements of position are used for measurement update. Initial conditions for the filter are chosen as

0
ˆ [0.2 0.01 10.5 1.05]x  .  

 

The tuning factors used in the three filters for this case of simulated data are: i) 1q =0.009 for HMQ, ii) window length 

N=20 for MLQ, and iii) low=0, high= 1 for FL based method (FLQ). Table 2 gives the PFE metric values for the three 

methods. Figure 3 shows the estimated position states x, estimated velocity states and estimation errors compared with the 
measurement errors, using FL based method. It is clear from that the constant velocity model is able to adapt to the 

coordinated turn model fairly well. The delay in the velocity estimate compared to the true state could be reduced by 

having faster sampling of the data. Similar results were observed for all the 3 adaptive filters considered. Figure 4 shows 

the autocorrelation functions (ACRs), and the RMS position errors from the three adaptive schemes. Figure 5 shows the 

norm of the estimation error covariance matrix.    

 

Table 2 PFE for the three adaptive KF (AKF) schemes (Case 2) 

 

 

 

 

 

Method PFE-x Position  PFE-x Velocity  PFE-y Position  PFE-y Velocity 

FLQ 5.0096 1.272 5.041 1.233 

OSQ 5.309 1.502 5.326 1.507 

HMQ 5.070 1.297 5.081 1.259 
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    Figure 3 Position, velocity state estimates & position errors: FLQ AKFs (Case 2). 

 

 
 

Figure 4 ACRs & RSS position errors: HM-, ML-  Q, and FLQ for AKFs (Case 2). 

 

                                       
                                     

Figure 5 Estimation error covariance norms: HM-, ML- and FLQ adaptive KFs (Case 2). 

 

Once again from case 2, it is found that the FLQ scheme yields somewhat better performance than other two adaptive 

estimation schemes. One can notice that the numerical PFE values in Table 2 (second case) are somewhat larger than the 

corresponding values in Table 1 (first case), because for the second case higher values of the (co-)variances are used. This 
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also ascertains the logical performance of the filtering schemes. As such all the three schemes perform well even though 

they do not carry the coordinated turn model in the KF (however, the simulated data were generated by using the 

coordinated turn model), but utilize only the constant velocity model, the reason is that this modelling uncertainty, by a 

large extent is accounted/compensated by the process noise and that too in an adaptive way.  

 

Tracking and data fusion using fuzzy logic augmented H infinity filter    
 

In the third case we consider fuzzy logic augmented H-Infinity (HI) filter for object tracking. An algorithm that employs 

FL rules is used to adapt an HI filter for target tracking application in a two-sensor data fusion scenario. The sensor data 

fusion is a process wherein data/information from more than one sensor is fused using some arithmetic, logical, and/or 

probabilistic formula/rule or method to obtain enhanced information and reduced uncertainty in the prediction. The sensor 

data fusion has evolved as an independent discipline and has risen to a very high level of sophistication at all data fusion 

levels: i) kinematic, ii) image, and iii) decision. In the present case for the target model we consider 2 DoF (degrees of 

freedom) model as   

 

An object is tracked with HI filter associated with each sensor-channel. The object’s state vector has two components: 

position and velocity. The measurement model for each sensor is given by 

 
With m=1,2 (number of sensors). The HI filtering problem differs from KF in two respects: i) the white noise processes 

w(.) and v(.) are replaced by unknown and yet deterministic (non-random) disturbance of finite energy, and ii) a pre- 

 

 

specified positive real number (gamma, a scalar parameter, in general
2 ) is defined. The aim of the filter is to ensure that 

the energy gain (in terms of HI norm) from the disturbances (and initial state error energy) to the estimation error, i.e. the 

state error is less than this number. This number can be called a threshold for the magnitude of the transfer function 

between estimation error and the input disturbance energies. From the robustness point of view we see that the H-infinity 

concept, at least in theory, would yield a robust filtering algorithm. The sensor locations/stations employ individual HI 
filter to create two sets of track files. The performance is evaluated in terms of state errors using simulated data. The 

estimates are obtained for each sensor (i=1,2) using HI a posteriori filter as described. The covariance matrix (known in 

case of HI filter as Gramian) time propagation is given as [7] 

 

 

The HI filter gain is given as 

 

The measurement update of states is obtained by 

 

 

The fusion of the estimates from the two sensors by SVF (state vector fusion) can be obtained by 

 

 

The fused state vector and the fused covariance (Gramian) of the fused state utilize the individual estimate state vectors (of 

each sensor) and covariance matrices.  
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In HI filter,   is the tuning parameter and in the present case it is tuned using FL/FIS. The   can be considered to be 

proportional to the magnitude/s of the noise processes/s. As we increase   we tell the filter that the state is likely to change 

more at each time step, this results in a filter that is more responsive to changes in the measurement. This can be viewed as 

an increase in the bandwidth of the filter. Values of   that are too small result in slow convergence of the optimization 

algorithm, and possibly convergence to a local minimum that is larger than that achieved by more appropriate values of    
Values of   that are too large would cause an oversensitivity of the algorithm to local gradient, and might result in 

divergence. FL is accommodated in tuning of the gamma parameter. We consider four approaches: i) the HI a posteriori 

filter, ii) FLHI 1, iii) FLHI 2, and iii) FLHI 3.  

 

In FLHI 1, the trapezoidal MF is used to decide the value of gamma. Iteration is done along the x axis. The value obtained 

from this MF is added to 1 to get the value of gamma. The MF has positive slope for first few iterations as value of gamma 

should be increased gradually in the beginning. Then, the slope becomes 0 for most of the iterations, since we maintain the 

higher gamma value. In the last few iterations, slope can be made negative since high gamma value is not very significant.  

 
In FLHI 2, we use the fact that the residual error behavior with respect to iterations is a damped sinusoidal wave. Hence, if 

the error (residual) and change in error (difference between the current residual and the last residual, i.e. error rate) is 

given, we can find whether the iteration is in the beginning or final stages. In this method, it is done using two sigmoidal 

functions, one each for residual and the change in residuals. Sigmoidal function for residuals makes sure that if error is 

less, corresponding output is high and if error is more, corresponding output is low. The output is always between 0 and 1. 

Sigmoidal function for change in residual works in a similar way. If one value (either residual or change in residual) is low 

and other is high, it means that process is still in the initial iterations. In such conditions, the gamma value should be low. 

Hence, ‘min’ operation is performed between the two membership functions  

 

For FLHI 3, we use; a) FIS consisting of antecedent (input functions), consequent (output functions) and fuzzy rules, b) 

Mamdani type FIS, c) the centroid method for defuzziffication, and d) the properties of damping sinusoidal function and 
gamma value to form fuzzy rules. In any FIS, fuzzy implication provides mapping between input and output fuzzy sets. 

Basically, a fuzzy If…Then… rule is interpreted as a fuzzy implication. The antecedent membership functions that define 

the fuzzy values for input (residual error and change of error) and for consequent output. The rules for the inference in FIS 

are created based on the past experiences and intuitions. Three rules are used to tune the parameter gamma 

 

Rule 1: IF residual value is high (irrespective of change in residual value), THEN gamma value should be low. (This rule 

is created based on the fact that, when error is high; gamma value should be less since process is in the initial stage).  

 

Rule 2: IF change in residual value is high (irrespective of residual value), THEN gamma value should be low. (This rule 

is created based on the fact that, when change in error is high; gamma value should be less since process is still in the 

initial iteration). 

 
Rule 3: IF residual is low AND change in residual is low, THEN value of gamma is high. (This rule is created based on the 

fact that only when both error and change in error are low, the value of gamma should be high). 

 

General observations for the rules are: i) If the error (residue) is high, the output function is at a higher value. Hence, the 

area of aggregate of all output functions will have more area towards one. If the error is low, the output function is at a 

lower value and the output function of this rule does not contribute much to the aggregate output function. This rule pulls 

the gamma value towards 1; ii) If the change in error is high, the output function is at a higher value. Hence, the area of 

aggregate of all output functions will have more area towards 1. If the change in error is low, the output function is at lower 

value and the output function of this rule does not contribute much to the aggregate output function. This rule pulls the 

gamma value towards 1; and iii) For both error and change in error, a min operation is performed between the two 

functions. Hence the output is high only if both the parameters (residue and change in residue) are low. 
 

The target data are generated using constant acceleration model with process noise increment. With sampling interval T = 

0.1 s, a total of N = 500 scans are generated. The normalized random noise is added to the state vector and the 

measurements of each sensor are corrupted with random noise. The sensor could have dissimilar measurement noise 

variances (Sensor 2 having higher variance than Sensor 1).The initial conditions for the state vector are x(0)=[200 0.5]. The 

performance of the fusion by both the methods i.e. HI filter (HIF) and FL-based HI filter (FLHI) is evaluated in terms of 

estimation energy gain, and this can be considered an upper bound on the maximum energy gain from input to the output. 

The PFEs and the % state errors are given in Table 3. From the performance plots shown in Figures 6-8 (for FL based HI), 

and Table 3, it is seen that the FLHI based approaches give better results than only HI filter.  
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Table 3 PFE for HI & FLHI filters (Case 3) 

 

 

 

 

 
 

 

 

 

 

 

 

       

 

 

 

 

 

 

 
 

Figure 6 Measurements and residuals (Case 3) 
 

 
               

Figure 7 State-errors with bounds (Case 3) 

Method/Filter  HI norm (fused) & PFE (S1 

and S2)  

Sensor 1 and 

2 

F- fused 

% SE position  

SE-State error  

% SE velocity 

HI   0.0522; 0.4428; 0.5684 S1 0.2100 5.5567 

  S2 0.2723 6.3979 

  F 0.1740 5.4370 

FLHI-1 0.0211; 0.4034; 0.5184 S1 0.1264 4.3979 

  S2 0.1612 5.8195 

  F 0.1028 4.5666 

FLHI-2  0.0081; 0.3847; 0.4960 S1 0.0799 3.2170 

  S2 0.1000 4.7149 

  F 0.0637 2.9672 

FLHI-3 0.0084;0.3848;0.4949 S1 0.0786 3.2434 

  S2 0.0975 4.8234 

  S3 0.0639 3.2156 
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Figure 8 Norms of covariance matrices (Case 3) 

 

CONCLUSIONS 

 
We have discussed four adaptive schemes that can be used in conjunction with either KF or HI filter, and have evaluated 

their performances for one/or more of the realistically generated simulated data in the target tracking applications. Also, we 

have presented FL based adaptive scheme for H infinity filter in tracking and sensor data fusion scenario. From the results 

of the three cases studied, we infer that the FL based adaptive KF and HI filter perform better than non-fuzzy logic based 

schemes.   
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