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ABSTRACT 

 

The Fractional Fourier Transform (FrFT) has many applications, including signal and image processing. It has 

been shown to provide significantly improved performance in signal detection & demodulation and image 

enhancement over the conventional fast Fourier transform (FFT). In this paper we  apply  the  FrFT  to  cyclo-

stationary  feature  detection  (CFD),  which  has also been traditionally performed using the FFT. We show that 

the FrFT provides improved signal detection capabilities using several modulation schemes as examples, 

allowing detection rates of 90% or greater at lower signal-to-noise ratio (SNR) for all modulation schemes 

considered, depending upon the desired probability of false alarm (PFA) and desired probability of detection (PD). 

This method therefore has potential for more reliably detecting signals in noisy, non-stationary environments 

with heavy co-channel interference. 

 

 

  

 

 

1. INTRODUCTION 

 

The Fractional Fourier Transform (FrFT) has been applied to problems in fields such as quantum mechanics, optics, 

image processing, data compression, and signal processing for communications [15]. For example, in [2] it replaces 

the Fast Fourier Transform (FFT) to improve performance of orthogonal frequency division multiplexing (OFDM) in 

dispersive channels. It has been applied extensively in the field of optics [4]. The optimal linear filter to be used 

in the FrFT domain is derived in [11] and expanded in [16] for the case of unknown noise statistics. In [13] a least-

mean square (LMS) algorithm to implement adaptive filtering in the FrFT domain is introduced. The FrFT is a 

very useful tool for separating a signal-of-interest (SOI) from interference in a non-stationary environment [15]. 

Such an environment arises when users are moving or frequency on a mobile device is drifting, as in a cellular 

system, or due to Doppler and time-varying co-channel interference (CCI), as in a satellite system. The 

improvement arises because we utilize fractional time-frequency axes not exploited by conventional methods such 

as the Fast Fourier Transform (FFT), which operates in the frequency domain only [1]. 

 

Cyclo-stationary feature detectors (CFDs), which are used to detect signals based on their periodic statistical 

properties, have conventionally used the FFT; we denote this as simply the CFD. CFDs have been studied for decades 

and applied also to many fields (see, for example, [8] for a comprehensive overview of past research). Past work 

has also assumed the environment to be stationary, such that coherent integration is possible (e.g. [6] and [14]). In 

this paper, we apply the FrFT, which requires estimation of the optimum rotational parameter ‘a’, i.e. the ‘ta’ axis, to 

better detect the signal in a non-stationary environment. We will show that the proposed method, denoted FrFT-CFD, 

can provide significant improvement in detection capability. We study its performance using several modulation 

schemes, a range of PFA and a range of signal-to-noise ratio (SNR), to be discussed later. We also consider both 

training mode, i.e. when some information about the signal to be detected is known, as well as blind mode. 

 

The paper outline is as follows: Section 2 briefly reviews the FrFT. Section 3 describes conventional cyclo-

stationary detection using the FFT and its theoretical performance. Section 4 discusses the proposed method of 

detection using the FrFT in place of the FFT. Section 5 has simulation results showing the performance of the 

proposed CFD-FrFT method with signals using the aforementioned modulation schemes and non-stationary 

interference, comparing it to the conventional CFD simulations and theoretical performance. Conclusions and 

remarks on future work are given in Section 6. 



International Journal of Enhanced Research in Science, Technology & Engineering 

ISSN: 2319-7463, Vol. 5 Issue 1, January-2016 
 

Page | 26  

 

 

2. BACKGROUND: FRACTIONAL FOURIER TRANSFORM (FRFT) 

 

In discrete time, the FrFT of an N × 1 vector x is 

                             (1) 
 

where Fa  is  an N × N  matrix with elements ([5] and [15]) 

   

                    (2) 

 

and where uk[m] and uk[n] are eigenvectors of the matrix S defined by [5] 

     (3) 

and 

     (4) 

The term ‘a’ is called the rotational parameter of the FrFT. Optimization of ‘a’, 0 ≤ a ≤ 2, where a = 0 is time, and a = 1 
is frequency, enables better estimation of a signal in non-stationary channels, and gives the FrFT its significant 

processing advantages over the FFT (a = 1). We will discuss how to estimate ‘a’ in Section 4. 

 

 

3. CONVENTIONAL CFD USING THE FFT 

 

Consider a received signal sampled in discrete time, y(i), which we write as  

                 (5) 
 

where x(i) is modulated SOI using one of the modulation schemes to be discussed in Section 5. We upsample the SOI by 

a factor of SPS (samples per symbol) and filter the signal using a root-raised cosine (RRC) filter with roll-off factor α. 

Also, xI(i) is the interference term, and n(i) is additive white Gaussian noise (AWGN). We set the variance of the noise 

samples, σ2
N, based on the desired SNR, expressed in dB, using 

            (6) 

 

Index i denotes the ith sample, where i = 1, 2, ..., N , and N is the total number of samples per block that we process; we 

can therefore write the received signal in vector form as 

                            (7) 

 
Generally, in a benign, stationary environment, the larger we make N, the better our detection rate of the SOI, because we 
obtain a sharper peak and finer resolution when taking FFTs. However, in a non-stationary environment, we must make 
N small enough so that the signal is close to stationary over the N samples, else performance degrades. Hence, in a real 
world non-stationary channel, our detection performance suffers because of limitations in N.  We further process M 
blocks of y to obtain a statistical measure of the signal detection probability. In this paper we consider one or two 
interferers that are approximately the same or lower power as the SOI, and are non-stationary in time or in frequency. 
The interferers considered will be described more specifically in Section 5. 

A conventional CFD attempts to detect the signal x(i), but does not consider the effect of non-stationarity of the signals, 
thereby relying solely on FFT techniques and allowing coherent integration. Denoting the FFT size as NFFT, we compute 
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    (8) 

where ∗ denotes complex conjugate and the notation shows that the second term has been delayed from the first term by 

one sample. Note that conventional CFDs usually perform the operation by averaging yCFD over NC blocks of size NFFT to 
improve detection performance, a process called coherent integration, but because of non-stationarity in real channels, 

this will degrade performance, so in this paper we restrict our attention to NC = 1. We compute the peak of the CFD and 

compare it to a threshold, given by [10] 

     (9) 

where PFA denotes the desired probability of false alarm (i.e false detection), and χ−2 denotes the inverse of the chi-

squared cumulative distribution function (CDF), given by 

                            (10) 

with v denoting the number of degrees of freedom in the samples in z and Γ−1 denoting the inverse of the Gamma 

function. The Gamma function is defined as [7] 

              (11) 

If the peak in the CFD is greater than the threshold γ, we declare a detection occurred. We count the total number of 
detections over the M trials and divide by M to obtain the probability of detection, PD. 

The theoretical, or ideal, performance of the CFD is ([3] and [9]) 

      (12) 

and 

          (13) 

where 

        (14) 

and QM(A, B) is  the generalized Marcum-Q  function 

         (15) 

and I0(
.) is the modified Bessel function of the first kind, of order zero. These equations allow us to compute the 

theoretical PDi as  a  function of  the desired  PFA and  SNR,  which  we  will  compare with  the simulation results  in  
Section  5.  For each value of SNR, we compute σN , then compute σw  from Eq. (14). Next, from PFA and σw we 
compute ρ from Eq. (12). Finally, we use Eq. (13) to compute PDi. 

 

4. PROPOSED CFD METHOD USING THE FRFT 

 

A. Training Mode 

The proposed method using the FrFT modifies the above by translating the time axis to a new axis ta given by the 

rotational parameter ‘a’ containing more of the signal energy than the original time or frequency axes. Suppose we 

have some information about the signal that we are trying to detect, e.g. a known training sequence, preamble, header, 

etc. Then we can use a modified version of the algorithm presented in [17], where we choose the axis in which 

the desired SOI and interference overlap as little as possible. Since we do not have a measure of the interference 

separate from the SOI as was used in [17], we use the received signal instead and choose the axis where the SOI 

and received signal overlap the most. The proposed algorithm with the required modifications is summarized as 

follows [17]: 
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We increment ‘a’ in Step (5) using a nominal step size, e.g. ∆a = 0.1. Recall that F
a was defined in Eq. (2). Then, using 

the above value of aopt, we obtain the FrFT-CFD by computing 

         (16) 

and compute FrFT-CFD  using 

    (17) 

 

We compare yFrFT−CFD,t to the same threshold as with the original CFD and compute detection probabilities as before.  

 

B. Blind Mode 

Without the benefit of a training signal, we can still apply the FrFT by simply computing the energy of the 
composite, received signal over the range of ‘a’ from 0 ≤ a ≤ 2, again using ∆a = 0.1, and choosing the value of 
‘a’ for which the energy is maximum. That is, we compute 

     (18) 

        
a

         

where the summation is over all the N samples in y. Using this new value of aopt,b in place of aopt,t, we compute the 
FrFT-CFD in blind  mode 

         (19) 

and compute FrFT-CFD  using 

   (20) 

 

The same threshold as before is used to determine detection probabilities. Note that here we are trying to detect an 

unknown signal, so we cannot take advantage of a training signal. However, since we are using the energy to 

determine the optimum rotational axis, we expect minimal degradation over training mode since this energy is 

present in both the training signal and the received signal. This would be sufficient for signal detection, but for 

signal demodulation we need the technique in [17] that employs a training signal and uses gaps in the training 

signal to estimate the non-stationary interference to filter it out in the fractional space. Both training and blind 

modes should outperform the conventional CFD which only operates in the frequency domain. All the methods will, 

however, suffer performance loss because we cannot coherently integrate when we operate in a real world, non-

stationary environment. 

 

5. SIMULATIONS 

 

We present simulation examples to compare the performance of the CFD algorithm and the theoretical result to the 

proposed FrFT-CFD algorithm by letting x(i) be a signal using all  of  the  following  modulation  schemes:  binary  

frequency  shift keying (BFSK), binary phase shift keying (BPSK), quaternary phase shift keying (QPSK), 

minimum shift keying (MSK), and continuous phase frequency shift keying (CPFSK). We assume that the 

interference is composed of two signals, 

 

             (21) 

one taking on the form of a chirp signal, 

     (22) 

  and the other a Gaussian pulse, 

             (23) 
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where fs is the sampling rate in Hz, and β and ϕ are the amplitude and phase of the pulse, respectively, uniformly 

distributed in (0, 1). Letting the number of samples per symbol be SPS = 4, and taking fs = 1 MHz, the 

symbol rate is therefore Rs = fs/SPS = 250 ksps. We let the block size and FFT size be N = NFFT  = 64 samples, 
equivalent to 16 symbols  at 4 samples per symbol, and we process M = 5,000 trials to obtain a statistical 
estimate of the PD . Recall that no coherent averaging is done, so the detection decisions are made using just 64 
samples. We study the effect of filtering by upsampling the SOI with an RRC filter with rolloff α = 0.4, and 
we study the detectors’ performance for PFA = 10-1, 10-2, and 10-3. Performance is not significantly affected by 
the choice of filter rolloff, but the effect of transmitter filtering does make performance worse and therefore must 
be included. We plot PD vs. SNR for both training mode and blind mode. The plots are shown in Figs. 1-6. 

 

At PF A = 10−1, we see the most significant improvement in our proposed technique, which offers up to 6.5 dB 
improvement over the conventional algorithm in training mode, only slightly less at 6 dB in blind mode, when 
PD ≥ 90%. This value of PD is chosen because a smaller value would typically not be considered sufficient 
enough. If we can relax the requirement to PD ≥ 80% we see up to 11 dB improvement in our technique. 
Note that the performance of the CFD and FrFT-CFD exceeds ideal performance when PF A is high. This 
occurs because the interference contributes non-Gaussian noise to the total noise, thereby making the theoretical 
expression, which assumes only AWGN, inaccurate. Interference also increases the noise floor, thereby increasing 
the power of the peak used in the detection finding technique, which increases the PD ; recall that the selection of 
the  threshold in our model is  unaltered by the  presence of the  interference.  The simulation performance is further 
enhanced by the fact that the detection threshold is lower when PFA is higher, which makes the contribution of the 
non-Gaussian interference more dominant over the AWGN, but again the theoretical model does not include 
interference. Development of a theoretical model in the FrFT domain is left for future work. We did observe that 
if there is no non-stationary interference, then the theoretical curves match the simulation results for both the 
FrFT-CFD and the CFD, as would be expected. 

 
When PFA = 10-2, we are able to achieve PD ≥ 90% with 2 − 2.5 dB less SNR in training mode with the FrFT-CFD vs. 
the CFD; this drops to about 0.5 − 1 dB in blind mode, as expected. However, notice that we begin detecting signals 
at much lower SNRs, up to 6 − 7 dB lower, but this improvement reduces as PD increases; nonetheless, we achieve 
better performance at all values of PD for all modulation schemes. There are differences in performance depending 
on modulation scheme, with BFSK performing the worst and CPFSK the best. This is true regardless of 
algorithm choice. The performance would normally be improved using coherent integration, which we cannot do 
here. Nonetheless, the FrFT-CFD still outperforms the conventional CFD. Note also that the CFD performance is 
always slightly worse than theoretical performance, as expected, by about 1−3 dB, whereas the FrFT-CFD is able 
to achieve close or even better than theoretical by exploiting the FrFT domain. 
 
When PFA reduces to 10-3, we begin to see a degradation in performance. Our algorithm still provides about 
1−2.5 dB improvement for PD ≥ 90% in training mode, but blind mode degrades. This is to be expected 
because in blind mode, as PFA reduces, the threshold increases, and the interference can smear the SOI. Hence, 
the benefit of the algorithm is most significant when a training signal is available. If this can be obtained, we 
continue to see 0.5−1 dB improvement in the FrFT-CFD over the CFD even at PFA = 10-5 for PD ≥ 80%. 

 

 
Fig. 1.  Probability of Detection (PD) vs. SNR [dB]; Training Mode; PFA = 10

−1
, Filter with Rolloff, α = 0.4, M = 

5000 Trials 
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Fig. 2.  Probability of Detection (PD) vs. SNR [dB]; Blind Mode; PFA = 10
−1

, Filter with Rolloff, α = 
0.4, M = 5000 Trials 

 

 

 
Fig. 3.  Probability of Detection (PD) vs. SNR [dB]; Training Mode; PFA = 10

−2
, Filter with Rolloff, α = 0.4, M = 

5000 Trials 
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Fig. 4.  Probability of Detection (PD) vs. SNR [dB]; Blind Mode; PFA = 10

−2
, Filter with Rolloff, α = 0.4, M = 5000 

Trials 

 

 

 

 
Fig. 5.  Probability of Detection (PD) vs. SNR [dB]; Training Mode; PFA = 10

−3
, Filter with Rolloff, α = 0.4, M = 

5000 Trials 
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Fig. 6.  Probability of Detection (PD) vs. SNR [dB]; Blind Mode; PFA = 10

−3
, Filter with Rolloff, α = 0.4, M = 5000 

Trials 

 

6. CONCLUSION 

In this paper, we study a new cyclo-stationary feature detector using the Fractional Fourier Transform (FrFT-CFD) 

in place of the traditional FFT-based CFD, simply called CFD. This requires first computing the FrFT 

rotational axis by searching and finding the rotational parameter ‘a’ for which the projection of the signal 

energy, i.e. the magnitude of the FrFT of the signal, is maximum. Once the best ‘a’ is found, we compute the 

FrFT-CFD by replacing the signal with its FrFT, using the parameter ‘a’. This equates to multiplying the signal 

by a matrix, which is typically kept small due to our desire to operate in non-stationary environments. We show 

through simulation, that the proposed FrFT-CFD method outperforms traditional CFDs based on the FFT when non-

stationary interference is present for a number of modulation schemes, and a range of false alarm probability. More 

significant benefit occurs when higher probability of false detections are acceptable. The algorithms can operate 

blindly, without any known training sequence, offering improvements over the conventional technique of 1 − 2.5 

dB down to PFA = 10−2; blind mode at PFA ≤ 10−3 requires further study. When a training signal is used, 

this greatly increases to 6−11 dB at PFA = 10−1 and 1−2.5 dB at PFA = 10−3. The algorithm performs 

without the benefit of coherent integration, which is limited in non-stationary channels; however, coherent 

integration would improve performance if it can be applied, but this is left as a topic for future work. 

Future work therefore involves improving the FrFT-CFD performance when operating blindly and when 

PFA ≤ 10−3 and could also involve modifying the theoretical detector performance to include interference.  

 

7. ACKNOWLEDGMENTS 

 

The author thanks The Aerospace Corporation for funding this work, Alan Foonberg for reviewing the 
paper, and Brenda Kannard for help with formatting and editing the paper. 

 
REFERENCES 

 

[1]. Almeida, L.B., “The Fractional Fourier Transform and Time-Frequency Representation”, IEEE Trans. on 
Sig. Proc., Vol. 42, No. 11, Nov. 1994. 

[2]. Azmy, M.H., Elgamel, S., Mamdouh, A., and El-Barbary, K., “Performance Improvement of the OFDM 
System Based on Fractional Fourier Transform over Doubly Dispersive Channels”, Proc. IEEE Int. Conf. 
on Engineering and Technology, Cairo, Egypt, Oct. 10-11, 2012. 

[3]. Bagwari, A., Tomar, G.S., “Multiple Energy Detection vs. Cyclostationary Feature Detection Spectrum 
Sensing Technique”, Proc. 4th Int. Conf. on Communication Systems and Network Technologies, 2014. 

[4]. Bultheel, A., and Sulbaran, H.E.M., “Computation of the Fractional Fourier Transform”, Int. Journal of 



International Journal of Enhanced Research in Science, Technology & Engineering 

ISSN: 2319-7463, Vol. 5 Issue 1, January-2016 
 

Page | 33  

 

Applied and Computational Harmonic Analysis 16 (2006), pp. 182-202. 
[5]. Candan, C., Kutay, M.A., and Ozaktas, H.M., “The Discrete Fractional Fourier Transform”, IEEE Trans. 

on Sig. Proc., Vol. 48, pp. 1329-1337, May 2000. 
[6]. Enserink, S., Cochran, D., “A Cyclostationary Feature Detector”, Proc. Asilomar Conf., 1995. 
[7]. Evans, M., Hastings, N., and Peacock, B., “Statistical Distributions”, 2nd ed., John Wiley,    1993. 
[8]. Gardner, W.A., Napolitano, A., and Paura, L., “Cyclostationarity: Half a Century of Research”, EURASIP 

Int. Journal of Advances in Sig.  Proc. 86 (2006), pp. 639-697. 
[9]. Kay, S.M., “Fundamentals of Statistical Signal Processing, Volume II: Detection Theory”. 1998.  
[10]. Kreyszig, E., “Introductory Mathematical Statistics”, John Wiley and Sons,   1970. 
[11]. Kutay, M.A., Ozaktas, H.M., Arikan, O., and Onural, L., “Optimal Filtering in Fractional Fourier 

Domains”, IEEE Trans. on Sig. Proc., Vol. 45, No. 5, May 1997. 
[12]. Kutay, M.A., Ozaktas, H.M., Onural, L., and Arikan, O. “Optimal Filtering in Fractional Fourier 

Domains”, Proc. IEEE Int. Conf. on Acoustics, Speech, and Sig. Proc. (ICASSP), Vol.  2, pp. 937-940, 
1995. 

[13]. Lin, Q., Yanhong, Z., Ran, T., and Yue, W., “Adaptive Filtering in Fractional Fourier Domain”, 
International Symposium on Microwave, Antenna, Propagation, and EMC Technologies for Wireless 
Communications Proc., pp. 1033-1036,   2005. 

[14]. Rifkin, R., “Comparison of Performance Measures for Intercept Detectors”, Proc. IEEE Tactical 
Communications Conf., Vol.  1, pp. 509-518, May 10-12, 1994. 

[15]. Ozaktas, H.M., Zalevsky, Z., and Kutay, M.A., “The Fractional Fourier Transform with Applications in 
Optics and Signal Processing”, John Wiley and Sons: West Sussex, England, 2001. 

[16]. Subramaniam, S., Ling, B.W., and Georgakis, A., “Filtering in Rotated Time-Frequency Domains with 
Unknown Noise Statistics”, IEEE Trans. on Sig. Proc., Vol.  60, No. 1, Jan.  2012. 

[17]. Sud, S., “Estimation of the Optimum Rotational Parameter of the Fractional Fourier Transform Using its 
Relation to the Wigner Distribution”, International Journal of Emerging Technology and Advanced 
Engineering (IJETAE), Vol.  5, No. 9, pp. 77-85, Sep. 2015. 


