SIMULINK AND COMPARISON OF PID CONTROLLER IN POWER SYSTEM

Annu¹, Deepak Joon², Priti Prabhakar³

¹M.Tech Scholar, Dept. of Electrical & Electronics Engineering, RIEM, Rohtak, Haryana, India
²Assistant Professor, Dept. of Electrical & Electronics Engineering, RIEM, Rohtak, Haryana, India
³Assistant Professor, Deptt. of Electrical Engineering, GJUS&T, Hisar, Haryana, India

ABSTRACT

The main objective of Load Frequency Control (LFC) is to regulate the power output of the electric generator within an area in response to changes in system frequency and tie-line loading. Most LFCs are primarily composed of an integral controller. The integrator gain is set to a level that compromises between fast transient recovery and low overshoot in the dynamic response of the overall system. This type of controller is slow and does not allow the controller designer to take into account possible changes in operating conditions and non-linearity in the generator unit.

There are a number of ways through which nonlinearity can be present in the system. First-Order plus Delay Time (FOPDT) systems are very common. In this report comparison of various controllers is done for the system having first order plus time delay with the help of Error and Trial method using MATLAB SIMULINK & MATLAB CODING, Zeigler-Nichols method, Cohen-Coon method, Tyreus-Luyben method, Approximated M-Constrained Integral Gain Optimization (AMIGO) method, and Fuzzy logic controller with their respective plots are presented. Plots are shown to validate the schemes.

Various factors such as rise time, settling time, maximum overshoot have been calculated manually. The comparisons of various controlling techniques have been done for obtaining best parameters of PID controller for power system. Therefore, the article presents advanced techniques for Load Frequency Control.

Index Terms: PID controller, Zeigler-Nichols method, Cohen-Coon method, Tuning, Delay time.

1. INTRODUCTION

Frequency is an explanation of stability criterion in power systems. To provide the stability, active power balance and steady frequency are required. Frequency depends on active power balance. If any change occurs in active power demand/ generation in power systems, frequency cannot be hold in its rated value. So oscillations increase in both power and frequency. Thus, system subject to a serious instability problem. In electric power generating system, disturbances caused by load fluctuations results in variation in its value to the desired frequency value. The principle aspect of Automatic Load Frequency Control is to maintain the generator power output and frequency within the prescribed limits [1]. In order to keep the power system in normal operating state, a number of controllers are used in practice. The PID controller will be used for the stabilization of the frequency in the load frequency control problems.

Area load changes and abnormal conditions leads to mismatches in frequency and tie line power interchanges which are to be maintained in the permissible limits, for the robust operation of the power system. For simplicity, the effects of governor dead band are neglected in the Load Frequency Control studies.

Many studies have been carried out in the past on this important issue in power systems, which is the load frequency control. As stated in some literature (RamaSudha, et al., 2010; Bevrani, 2009; Ismail, 2006), its objective is to minimize the transient deviations in these variables (area frequency and tie-line power interchange) and to ensure their steady state errors to be zeros [1]. This report is to analyze the First-Order plus delay time (FOPDT) model using various controlling techniques with the help of MATLAB SIMULINK. The report mainly concerned about P, P-I and P-I-D controllers, their unit step response in time domain and their characteristics including effects of various parameters such as rise time, overshoot and settling time. As far as load frequency control systems [2] are concerned PID controllers are found in abundance in all sectors of power system. Even most complex power system networks are there whose main control building block is PID. It provides an effective means for capturing the approximate, inexact nature of the real world.

In the integral controller, if the integral gain is very high, undesirable and unacceptable large overshoots will be occurred. However, adjusting the maximum and minimum values of proportional (Kp), integral (Ki) and derivative
(Kd) gains respectively, the outputs of the system (voltage, frequency) could be improved. The main objectives of LFC, is to regulate the power output of the electric generator within a prescribed area in response to changes in system frequency, tie line loading so as to maintain the scheduled system frequency and interchange with the other areas within the prescribed limits.

2. CONTROLLERS

An industrial control system comprises of an automatic controller, an actuator, a plant, and a sensor. “Automatic control systems” [2] are found in abundance in all sectors of industry, such as quality control of manufactured products where delay plays a critical role.

Classification of Industrial controllers:-

Industrial controllers [4] may be classified according to their control action as:

- Proportional controllers
- Proportional Integral controllers
- Proportional Derivative controllers
- Proportional Integral Derivative controllers

Proportional Control:-

A proportional control system [5] is a type of linear feedback control system. This can be mathematically expressed as

\[P_{out} = K_p \cdot e(t) \]

With increase in \(K_p \):
- Response speed of the system increases.
- Overshoot of the closed-loop system increases.
- Steady-state error decreases. But with high value, closed-loop system becomes unstable.

![Fig 1: Step response of P controller](image)

Proportional Integral controllers:-

PI Controller (proportional + integral control) [8] is a feedback controller which drives the plant to be controlled by a weighted sum of the error (difference between the output and desired set-point) and the integral of that value. The PI controller is mathematically denoted as:

\[G = K_p + \frac{K_i}{s} \]

As the value of \(Ti \) is increased
- Overshoot tends to be smaller and
- Speed of the response tends to be slower.
Proportional Derivative controllers:-
Proportional Derivative or (PD control [9]) combines proportional control and derivative control in parallel. Derivative action acts on the derivative or rate of change of the control error. In order to use derivative control the transfer functions must be proper. This often requires a pole to be added to the controller.

\[G_{pd} = K_p + K_d s \text{ or } G_{pd} = K_p (1 + T_d s) \]

With the increase of Td
- Overshoot tends to be smaller
- Slower rise time but similar settling time.

Proportional Integral Derivative controllers:-
“PID control [10]” is the method of feedback control that uses the PID controllers as the main tool. When used in this manner, the three element of PID produces outputs with the following nature:
- P element: proportional to the error at the instant t, this is the “present” error.
- I element: proportional to the integral of the error up to the instant t, which can be interpreted as the accumulation of the “past” error.
- D element: proportional to the derivative of the error at the instant t, which can be interpreted as the prediction of the “future” error.

The transfer function \(G(s) \) of the PID controller is

\[G(s) = K_p \left(1 + \frac{T_i}{s} + T_d s \right) \]

\[= K_p + \frac{K_i}{s} + K_d s \]
Delay Time or Dead Time Response

Anyone who has ever tried to stay comfortable while showering in a crowded building with old plumbing understands how delays [13] in a system can make the control problem much more difficult.

Modeling Delays:

The Laplace transform for a pure delay is just

\[f(t - \tau) \leftrightarrow e^{-s\tau}F(s) \]

Thus, it's easy to derive transfer functions for systems containing delays. Dead time appear in many processes in industry, power ayatem and in other fields, it is common in industrial process control. They are caused by some of the following phenomena: (a) The time needed to transport mass, energy or information; (b) the accumulation of time lags in a great number of low-order systems connected in series; and (c) the required processing time for sensors, such as analyzers; controllers that need some time to implement a complicated control algorithm or process.

Dead times introduce an additional lag in the system phase, thereby decreasing the phase and gain margin of the transfer function making the control of these systems more difficult. For a small time delay, a PID controller is commonly used. Dead time is the delay from when a controller output signal is issued until when the measured process variable first begins to respond.

IV. Simulink Model And Simulation Result

The temperature process [14] of an electric furnace is a common controlled object in temperature control system. This is given by the equation

\[G(s) = \frac{K}{(Ts + 1)}e^{-\alpha s} \]
Hence, the transfer function for the given electric arc furnace system is given by the equation.

\[G(s) = \frac{1}{(21.3s + 1)e^{-14.7s}} \]

Where,
- Delay time (L) = 14.7 sec
- Time constant (T) = 21.3 sec
- Static gain (K) = 1

SIMULATION RESULTS

Figure 5: Simulink model for trial and error method

Figure 6: Response without using any controller

Figure 7: Response with only proportional controller
Figure 8: Response with PI controller

Figure 9: Response with PID controller

A. SIMULINK MODEL FOR ZIGLER-NICHOLS OPEN-LOOP METHOD

Figure 10: Simulink model for Ziegler-Nichols open loop method

Figure 11: Ziegler-Nichols open loop P control response.
B. ZEIGLER-NICHOLS (METHOD II)

![Simulink model for Ziegler-Nichols open loop method]

RESULTS

![Sustained oscillations for Zeigler-Nichols method]
C. SIMULINK MODEL FOR COHEN-COON METHOD

Figure 19: Cohen-Coon MATLAB SIMULINK MODEL
D. SIMULINK MODEL FOR FUZZY LOGIC METHOD

![Simulink model for fuzzy logic controller](image)

Figure 23: Simulink model for fuzzy logic controller.

![Step response for fuzzy logic controller](image)

Figure 24: Step response for fuzzy logic controller.
E. SIMULINK MODEL OF TYREUS-LUYBEN METHOD

Figure 25 - Simulink model of Tyreus-Luyben method.

Figure 26- Step response for Tyreus-Luyben PI controller

Figure 27- Step response for Tyreus-Luyben PID controller

F. SIMULINK MODEL FOR AMIGO METHOD

Figure 28- Simulink model for AMIGO method.
Table 1: Comparisons of various methodologies done earlier.

<table>
<thead>
<tr>
<th>Methodology</th>
<th>PEAK AMPLITUDE</th>
<th>OVERSHOOT</th>
<th>SETTLING TIME (in sec)</th>
<th>RISE TIME (in sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trial and Error</td>
<td>1.011</td>
<td>1.13%</td>
<td>62</td>
<td>28.6</td>
</tr>
<tr>
<td>Z-N(open-loop)</td>
<td>1.1583</td>
<td>15.8%</td>
<td>111</td>
<td>10.65</td>
</tr>
<tr>
<td>Z-N(closed-loop)</td>
<td>1.31</td>
<td>31.6%</td>
<td>85.32</td>
<td>9.91</td>
</tr>
<tr>
<td>T-L PID</td>
<td>1.11</td>
<td>11.2%</td>
<td>100</td>
<td>13.21</td>
</tr>
<tr>
<td>C-C PID</td>
<td>1.49</td>
<td>49.9%</td>
<td>139</td>
<td>5.52</td>
</tr>
<tr>
<td>AMIGO</td>
<td>1.10</td>
<td>10.4%</td>
<td>121.98</td>
<td>24.88</td>
</tr>
<tr>
<td>FLC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2 Comparisons of various methodologies done by me.

<table>
<thead>
<tr>
<th>Methodology</th>
<th>PEAK AMPLITUDE</th>
<th>OVERSHOOT</th>
<th>SETTLING TIME (in sec)</th>
<th>RISE TIME (in sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trial and Error</td>
<td>1.0162</td>
<td>1.6%</td>
<td>57</td>
<td>27.25</td>
</tr>
<tr>
<td>Z-N(open-loop)</td>
<td>1.017</td>
<td>1.7</td>
<td>208.5</td>
<td>17</td>
</tr>
<tr>
<td>Z-N(closed-loop)</td>
<td>1.336</td>
<td>33.6%</td>
<td>150</td>
<td>13.30</td>
</tr>
<tr>
<td>T-L</td>
<td>0</td>
<td>0</td>
<td>200</td>
<td>88</td>
</tr>
<tr>
<td>C-C</td>
<td>1.478</td>
<td>47.8%</td>
<td>173</td>
<td>12.17</td>
</tr>
<tr>
<td>FLC</td>
<td>1</td>
<td>0</td>
<td>98</td>
<td>46.81</td>
</tr>
</tbody>
</table>

V. CONCLUSION

This paper has presented the comparison of PID controllers with the help of Simulink. The use of PID controllers for the control of frequency in the form of dead time processes has been addressed. Then, starting from the model obtained, different approaches have been presented for the tuning of the PID parameters with the aim of showing that the tuning problem can be tackled from different viewpoints, each with specific features, methodology for the performance assessment and retuning of PID controllers has been described. We need simple way to use, intuitive methods that require little information and that give moderate performance. There is also a need for sophisticated methods that give the best possible performance even if they require more information and more computation.

A good tuning method should be based on a rational design method that considers trade-offs between:

- Load disturbance attenuation
- Model requirements
- Robustness
- Response to set point change
REFERENCES

[23] Huang Ying ; Zhang Fujun ; Liu Fushui ; GeYunshan ; Sun Yebao, “ Gasoline engine idle speed control system development based on PID algorithm.”, , Publication Year: 1999 , Page(s): (30 - 33 vol.1 , Cited by: Papers (2)

[32]. N. Yadaiah1, SMIEEE and Srikanth Malladi2, “An Optimized relation between Ti and Td in Modified Ziegler Nichols

[33]. PID controller Tuning”, IEEE International Conference on Control Applications (CCA) Part of 2013 IEEE Multi-Conference on Systems and Control Hyderabad, India, August 28-30, 2013

[34]. N. Gireesh, Dr. G. Sreenivasulu, “Comparison of PI Controller Performances for a Conical Tank Process using different tuning” Published in: Advances in Electrical Engineering (ICAEE), 2014 International Conference on Date of Conference: 9-11 Jan. 2014 Page(s):1 – 4 INSPEC Accession Number: 14384490 Conference Location : Vellore DOI:10.1109/ICAEE.2014.6838426 Publisher:IEEE.

[37]. Matlab: Control System Toolbox / Temperature Control in a Heat Exchanger