System Level Modeling and Performance Analysis of GPU Based MR Image Reconstruction Algorithm

Hemanth.Y*, Prof. Murigendrayya.M.Hiremath+

M.Tech (BMSP&I) Dayananda Sagar College of engineering

Bangalore, India
hemanthy.1989@gmail.com
+ Assistant professor Department, Medical electronic, Dayananda Sagar College of engineering
Bangalore, INDIA
mmh.eda@gmail.com
Abstract— Compressed sensing (CS) Magnetic Resonance Image (MRI) reconstruction requires increased number of computations on CPU that results in long times for processing. To overcome this challenge, split Bregman algorithm has been developed [1]. The Bregman solver is an iterative process which uses the Graphical Processing Unit (GPU) in which the CPU transfers the load to GPU during the Iterative process which parallelizes the algorithm; based on which one can improve the efficiency of the algorithm. Algorithm modification is a continuous process for improvements in efficiency to achieve a real time operation of the system. To make this process further faster, performance number are predicted and analyzed for every functional modification in the algorithm. This performance analysis is done for conducting trade studies, addressing bottlenecks and exploring the architecture for the modified algorithm at early design stage. Simulation Based System Level modelling is essentially used for faster design and architectural exploration, this method is more accurate than the analytical method and is significantly faster than cycle accurate method. This method permits to understand the traffic, resource requirements, derive the cost and narrowing down the design space for proposed algorithm. It is a flexible and faster scheme, but needs sophisticated techniques to mimic the actual design specific to the analysis. This project work has carried out to develop the abstract model of GPU for CSMRI reconstruction algorithm and map this algorithm to the GPU using VisualSim tool. Then generate the performance numbers by changing the parameters such CPU_Speed, PCI-e_Bus speed, frame size, number of iterations. As per the results by changing the image size, CPU_Speed, PCI_Bus Speed, GPU speed and iterations we can see the variations in the latency and utilization.
I. Introduction
Performance modeling is a structured and repeatable approach to model the performance of the System. It begins during the early phases of the system design and continues throughout the design life cycle. When we create performance models, we have to identify application scenarios and the performance objectives. Performance objectives are measurable criteria, such as response time, throughput (how much work in how much time), and resource utilization (CPU_Memory, disk I/O, and network I/O).

• Performance modeling provides several important benefits

 Performance becomes part of the design.
 By building and analyzing models, we can evaluate tradeoffs before we actually build the solution.

 We can avoid surprises in terms of performance when the application is released into production.
 We can end up with a document of itemized scenarios that helps quickly see what is important. What to test for and how to know whether we are on or off track for. meeting our performance goals.
A. MRI Image Reconstruction
· MRI Data Acquisition
MRI data acquisition involves three major steps namely:

1) Gz, Slice selection by the use of Gz gradient: This selects axial slice in the object to be imaged.

2) Gy, Phase encoding using the Gy gradient: This creates rows with different phases.

3) Gx, Frequency encoding using the Gx gradient: This will create columns with different frequencies.
The K-Space is ﬁlled one line at a time, so the whole process of slice encoding, phase encoding and frequency encoding has to be repeated many times (till the whole area or slice to be image is complete).The sampled data (data obtained by sampling the FID ﬁeld) can be ﬁlled into the k-space matrix by any of the following method namely linear (Rectilinear), and other non Rectilinear methods like centric spiral, reversed centric etc. Most of the available MRI scanner uses linear (rectilinear) method of ﬁlling the k-space because of the availability of FFT for reconstruction of the k-space data.

· K-Space Data
The signal from the Scanner is sampled in the reconstruction engine/computer system to obtain the discrete time like signal called k-space data. The K-space data contains all the necessary information required to reconstruct an image. Also, it gives a comprehensive way for classiﬁcation and understanding of the imaging properties and method of reconstruction. Sampling at the centre of the acquired data and the high frequencies data are spaced around this centre. The low frequencies signals contain information about contrast giving the greatest changes in grey level with highest amplitude value. High frequencies signals contain information about the spatial resolution of the object or what is normally referred to as sharpness. High frequency signals display rapid changes of image signal as a function of position.of the acquired signal in MRI takes place in the Fourier space.
· Application Of Inverse FFT To K-Space Data
MRI reconstruction using FFT/IFFT is done in two steps, firstly the ID- IFFT of the row data is computed followed by the 1D-IFFT of column data. The same result will be obtained when 1D IFFT of the column is first computed before computing the 1D-IFFT of the column data. Reasons for this is because of linear and separability properties of DFT and the separability property [5]. In practical MRI reconstruction, there are some other pre-processing activities that must be accomplished before the application of IFFT. The ﬂow diagram for an MRI reconstruction is as shown in Fig1 and the reconstruction algorithm is discussed here with.
Step 1: Read data header information: Load RAW-nmn contains information about the MRI data ﬁle. It is a text ﬁle containing Information about Offset, DATA size, Kx Co-ordinate, Ky-Co-ordinate etc.

 Step 2: Read in the K-space information.

 Step 3: IFFT in Kx Direction,

 Step 4: IFFT in Ky Direction

 Step 5: Image Display
[image: image1.png]Road data header information

Information

Road In the K spar

IFET in Ky Direction

IFET in K, Direction

—

Image Display

Fig1: Flow diagram of IFFT Method of reconstruction [2]
The traditional IFFT is more time consuming, so in this method we are using Split Bregman Which is implemented in 2D-IFFT in which it parallelize the algorithm efficiently[1] the Fig1.5 shows the algorithm flow of Bregman method
In this method the K-space data from CPU has to transfer to GPU and the GPU has to compute the inner loop and outer loop in which it is an iterative process and the iteration depends on the size of the image. After computing independent loop the solution as to transfer to CPU were the image as to be displayed from the CPU.

[image: image2.png](1) Teamsfer Fourice data snd k-space mask to GPU.
(2) niialize nccesary temporary arrays on the GPU.
(5) Precompute outerand iner loop-independent actors.
outerloop » times:
innerloop s times:
4 Minimize L2 norm by dircet mate nversion.
() Updatesolution mage
(6)"Shink” TV ofsolaton.
(7) Update regman parameter.
end
() Updte Fourcr data matex
(5) Update imncr loopindependent matrics
d

(10) Teanser solution to CPU.

Fig2: GPU-based Split Bregman Compressive Sensing image Reconstruction [1].
B. Tool used for modeling the system
The tool used in this project is VisualSim designed by the Mirabilis in which VisualSim used for design and analysis of the systems. Mirabilis Design provides systems engineering solutions for performance analysis and architecture exploration of electronics and real-time software. Mirabilis Product VisualSim is used for performance, functional and power exploration of network of systems, large systems, sub-systems, components (IC, SoC, FPGA and boards) and real-time software. Models are constructed in a graphical block diagram editor using parameterized modeling blocks provided in VisualSim [3].
· VisualSim Library Description
In VisualSim, blocks are grouped together based on functionality and arranged in Library. VisualSim contain following libraries: Model, Source, Result, Defining Flow, Delay and Utilities, Resource, Hardware_Modeling, Script_Language_Interface, Math Operations, Application, Algorithmic.
· Model: It contains essential blocks to describe the underlying engine, define variables, setup, hierarchical elements and select the right simulator for the model.

· Source: User can generate traffic using a standard distribution, sequences, trace files, clocks and custom distributions.

· Result: This Library is used to evaluate the effectiveness of system model and to estimate the performance. This contains both textual and graphical viewers.

· Defining Flow: It is used in defining expressions, evaluate assignment, make control decisions and assign values to a Field or memory, randomize Field values, calculate processing cycles to execute a delay on the scheduler or Resource_FCFS blocks, compute statistics such as latency (TNOW TIME), utilization and throughput and create assumption values. Control Flow blocks are used to make decisions, create loops and take branches.

· Delay and Utilities: This library contains blocks that sets the delay in the model and controls the execution. For example, Isolate input Block will isolate the input or the output into two.

· Resources: Resources model the physical aspects of the system. In a performance of a system design, a model platform would be described using the physical components such as Queue, Schedulers, Flow Control and Associated Arbitration Policies: There are two ways to define resources Active and Passive. Active resources consume time while passive resources consume quantity. Passive resources can be created using Arrays, Database block or Quantity-shared Resources. All other blocks under resources are categorized as Active.

· Hardware Modeling: The Hardware Modeling toolkits generate transaction-level and cycle-accurate models of complex, hardware devices. Using this generator and the associated hardware architecture library, platform architecture can be defined graphically without the need to write C code or create complex spreadsheets of the instruction sets. The virtual platform can be used to select components, optimize component size and speed, and define arbitration algorithms.

· Script_Language_Interface: Interfaces are provided to run VisualSim in co-simulation with Verilog, MATLAB, C and CPP, Satellite Toolkit, SystemC and Satellite Toolkit. The Interfaces require the licenses for the relevant tools that are co-simulated with VisualSim.

· Math Operations: This library contains blocks such as Array, Boolean, Logic etc that are required for the operation of system model.

· Application: This library contains blocks for the purpose of networking and wireless sensor.

· Algorithmic: This library contains blocks to generate event and wave-forms. It also contains image processing, Petri net and signal processing blocks.
II. Methods

A system designer is given the application, constraints like real time execution requirements of the application and target architecture. The application is partitioned with some granularity. The partitioned components are mapped to hardware and software components in such a manner that it meets the constraints and achieves a set of design objectives like performance, cost, programmability etc
[image: image3.png]Constraints

Applications

HW/SW
ing.
& Binding

] performance |
bers

Fig 3: A typical embedded system design approach [4]

In traditional system design methodologies, the target architecture is predefined. If system level and component level architectures are fixed then the designer have design choices only in terms of HW/SW partitioning, binding and the granularity of the partitioning. So, there is a huge space for exploration in terms of partitioning and mapping. Therefore, there is a need for good heuristics algorithms and methods for partitioning and binding. On the other hand, if designer wants to exploit the potential of customization of application then along with partitioning and mapping choices, we also need to explore various architectural choices. The architectural choices can be considered at various levels. It makes the design space denser.

To rank various architecture instances, we need to evaluate these instances with application parts mapped to different components. Exploration is an iterative process, and each iteration may include various steps of system design. Broadly, we can consider iterations of the design space exploration as: concrete level and abstract level. Exploration iteration at concrete level has drawbacks in terms of speed and cost because of hardware and software synthesis, refinement of the application and interface synthesis require lots of efforts and are very time consuming.

In the other approach, explorations at abstract level, only for portioning and binding steps are included. It is a faster scheme, but needs some techniques to mimic the actual design and to estimate the performance parameters from abstract models for such component and binding. The latter approach for design exploration can be explained by Y chart [5] shown in Fig 3. Dotted arcs in this figure shows the feedback paths which can be used to guide to select architecture instance, partitioning and even application refinement of next iteration of exploration.

In such iteration of exploration, HW/SW partitioning and binding of the application is performed for one architecture instance. Then performance of the system and its components are evaluated using some estimation models. This performance evaluation gives values of some performance metrics like Utilization, execution time, Latency of components and conflicts on interconnections etc. The design decision can be made either on the basis of ranks of some architecture instances and partitioning or the performance number of one evaluation can be directly used to guide the selection of the next architecture and partitioning instances.

A. Performance evaluation

Performance evaluation plays an important role in design space exploration. It can be used to guide the selection of architecture instance as well as application partitioning. These decisions are made on the basis of various metrics. The selection of metrics varies with design objectives and constraints. At broader level we can define performance evaluation as measuring utilization and throughput of the resources. A system can be defined as a collection of architectural components and some workload assigned to them by application parts. Execution of an application on architecture can be viewed as a sequence of transitions through various system states. Fig 4 shows a generic approach for performance evaluation of a system. In this figure the first three boxes of (Application, Architecture Instance and HW/SW Partitioning) are merged into a single box with rounded corners.
[image: image4.png]Architecture
Modeling

N —

Model

Application
Modeling

}_.

valuation

Performance
Numbers

Architecture

L“huul,“h““‘

Fig 4: System performance modeling and Evaluation [4]
The dotted box shows the details of performance modeling and evaluation. Mapping of application parts onto architecture components are shown by various types of arcs. Mappings determine workloads assigned to processing elements, interconnections, memories etc. Performance evaluation involves two steps:

1. Architecture and Application Modeling: In this step architectural components and application are represented in some abstract form. It may be some formal representation like deterministic graphs(directed graphs, task graphs with deterministic time (delays), stochastic graphs (task graphs with stochastic time delays), queuing networks, Petri nets, Markov chains, analytical models expressed in terms of probabilities and delays, or a sequence of instructions in any programming language.

2. Evaluation of Performance: In evaluation step, models are processed and performance metrics are obtained. Evaluation may be done in two ways, analytical evaluation and evaluation by simulation. In analytical evaluation, a sequence of transformation is done and finally a set of equations are obtained. In simulation models are executed with some time scale.

B. Our Modeling Design Approach

[image: image5.png]Mapping Performance Metrics

Image Reconstruction U
Algorithm [—

B Lstency, mroughput,
resource utiization

Software Bahavior Hardware Component Ouput

Fig 5: Top level view of design approach
The performance analysis of the GPU based MR image reconstruction is based on modelling and mapping the Hardware and software components which is done using the VisualSim tool The Fig 5 gives the top level view of design approach the reconstruction algorithm is the load(Behavioral component) that is mapped to the processor, bus and memory units(architectural components) by using the VisualSim Tool, as the algorithm is mapped to the processor and memory units we get various performance metric such as the latency, throughput, Resource Utilization. In order to get the accuracy we have to refine the model by different techniques such as profiling, hardware modeling (cycle-accurate) etc. Exploration, at abstract level, can explore a larger part of the design space in a given time. Although it is less accurate, it helps to narrow down the design space.
C. Modeling Behavioral Flow of Reconstruction Algorithm
[image: image6.png]Frame Traffic
(User detined)

1-Dinverse

Fourier transform

in Column-wise
direction

Reconstructed
image

Raw data
processing (K-
Space)

Storing the IFFT
resultin GPU
Device memory

Display

Teansfering the
Fourier Data from CPU
memory to GPU
Memory Via PCl-e Bus

Transferringthe IFFT
data from GPU
memoryto CPU

memory Via PCl-e Bus

1-Dinverse
Fourier
trancform in
Row-wise
dircction

Storing the
transterred result
in CPU Main
memory

Fig 6: Behaviour flow diagram of modeling reconstruction algorithm
Behavioural flow diagram gives the complete overview of the reconstruction algorithm using GPU.
With the help of the algorithm flow we are modeling the system such that it helps in mimic the behavior of the system according to this flow as shown in Fig 6, initially the frames are generated in the MRI scanner in which the frames can vary depending upon the image size , the image size can be varied by the user so it is user-defined, then the scanned data from scanner should be processed by the CPU in which processed data is called the Fourier data or Raw data and this processed data will be stored in the CPU-memory buffer so it is called as K-space.

Then the IFFT is performed in which it requires huge computation and parallel processing elements thus the Fourier data has to be transferred to the GPU_Memory Via PCI-Express Bus [6] and the data are fetched from the GPU_Memory to GPU in such a way that the algorithm are parallelized and processed on the different freely available GPU-cores, this was done with help of split Bregman algorithm in which it parallelize the algorithm on the GPU efficiently thus the 2D- IFFT are performed on the GPU because of huge parallelization . After performing the 2D-IFFT on GPU the results are stored on the GPU_Memory then we need to free the GPU_Memory by transferring the solution from GPU_Memory to CPU_Memory via PCI-Express Bus and finally the reconstructed image is displayed from the CPU_Memory with the help of CPU.
1. Frame Traffic: Frame traffic block is the user-defined space in which the user can input size of the image, frame rate, Time per image. This is done by creating the parameter in the frame block.

2. K-space Processing Block: In this block the frames from the frame traffic are processed with the help of CPU to form the Fourier data. This processed data is stored in the CPU main memory so this is called as k-space data.

3. Transferring the Data from CPU to GPU: The Fourier data (K-space data) will be stored in the CPU main memory which should be transferred to GPU memory via PCI-e Bus [6].

4. 1-D inverse Fourier transform in KX direction: IFFT is performed in GPU in which it requires huge computation so it process on GPU Parallely by using the Split Bergman algorithm. This 1-D IFFT will be performed in the row wise direction [7].
5. 1-D inverse Fourier transform in KY direction: IFFT will be performed in GPU in which it requires huge computation so it process on GPU Parallely by using the Split Bergman algorithm. This 1-D IFFT will be performed in the column wise direction [7]
6. Transferring the IFFT data from GPU memory to CPU memory: The Processed IFFT data will be Stored in GPU main memory in which this data will transferred to CPU main memory [6]

7. Display: From the CPU main memory we can read the reconstructed data and it can be displayed on the screen.

D. System Architecture for image reconstruction on GPU

[image: image7.png]CPU Streaming processor 0
Multi core

CPy f

weas
oy
e

Streaming processorn

GPU_Device_
memory

[epucore W CPUCORE

Fig7: Overall System Architecture for Image Reconstruction

The Fig 7 shows the overall system architecture for image reconstruction in which the architecture consist of RTOS, CPU, CPU_Memory, PCI express Bus, GPU_device_Memory, GPU.

1. RTOS: The OS is used for scheduling the program for CPU and GPU. The operating system has the Context switching time for the program stalling.

2. CPU: In this system the CPU is used for performing the Fourier transform and also helps in physical address calculation in order to store the data in the CPU_Memory and CPU also helps in Transferring the GPU program and Fourier data to GPU with the intervention of OS.

In our proposed thesis we are using the Xeon X5650 processor in which it has following specifications [8]

1. Speed in MHz: 2.67GHz

2. Number of CPU_Cores: 6

3. Instruction Set: 64 bit

3. CPU_MEMORY: In this system the CPU_Memory is used to store the Fourier data (K-space) and it is also used to store the final reconstructed data. The CPU_Memory has the 3-level of memory hierarchy in which it has L1 cache, L2 Cache, L3 Cache. Initially the data and the instruction has to fetch from the cache, when there is no availability of the data in the cache then it has to fetch the data from the main memory with huge Miss penalty.

CPU_Main_Memory specification of Xeon X5650 processor:

1. CPU_Memory_Speed_MHz:1333
2. CPU_Memory_Size: 12GB

3. L1_Cache_Size: 32 KB

4. L2_Cache_Size:256 KB

5. L3_Cache_Size:12 MB
4. GPU: In this system, the GPU is used to perform the IFFT operation in which IFFT operation is performed Parallely on freely available cores.

In our proposed thesis we are using the Telsa C2050 series GPU in which it has following specifications [6/7]

1. Number of CUDA Cores:448 cores

2. Number of Streaming Processor:16

3. Numbers of cores per streaming processor:32

4. GPU_Clock Frequency MHz: 1150
5. GPU_Core clock Frequency_ MHz: 575 [8].
5. GPU_Memory: In this system the GPU_Memory is used to store the Fourier data (K-space) before IFFT operation is performed and it is also used to store the IFFT processed data after IFFT operation is performed. The GPU_Memory has the 2-level of memory hierarchy in which it has L1 cache,L2 Cache, where L1 cache is shared for each core per streaming processor and L2 cache is shared for all streaming processor. Initially the data and the instruction has to fetch from the cache when there is no availability of the data in the cache then it has to fetch the data from the VRAM memory with huge Miss penalty of 400-800 cycles[10].

1. GPU_Memory_Speed_GHz:1.5[6].

2. GPU_Memory_Size: 3GB
3. L1_Cache_Size: 64 KB
4. L2_Cache_Size:786 KB
6. PCI-e Bus: Peripheral Component Interconnect, (PCI), is a computer bus or expansion card standard, for connecting hardware devices. The three versions - PCI, PCI-X and PCIe - perform at varying speeds and specifications.

E. Mapping of the software and hardware components
[image: image8.png]cPu GPU

Operating
system

CPU Memory
GPU Memory PCl-e BUS

Frame K-Space Fourier data IFFT KX IFFT KY IFFT data Display

Traffic Processing transfer from Row-wise Column- transferred from
CPU to GPU wise GPU to CPU

SOFTWARE COMPONENTS

Fig8: Mapping of software and hardware components

In the modeling, first we need to identify the software and hardware components, in which the software components is called as behaviour view and the hardware components is called as architecture view. Each behaviour is mapped to their respective architecture resources.

In Fig 8 initially the frame traffic will be generated according to the user, the raw data from the frame traffic will processed in the CPU with the RTOS intervention. In this process initially the data will be fetched from the CPU memory, after processing, the processed raw data will be stored back in the CPU memory. Then the data transferred is performed from CPU Memory to GPU Memory, this is done with the request from RTOS to CPU in which the CPU is used in the physical address calculation, then with the help of the PCI-e Bus the data from CPU main memory will transferred to GPU host memory.

After data transfer the 1-D IFFT will be performed on the GPU in which it is processed parallel on freely available different streaming processor, both 1-D IFFT is done on row wise and column wise of the Fourier data matrix. Then after processing the IFFT data on the GPU, the GPU stores this processed data on its main memory, Later it transfers all this data to CPU memory from their reconstructed image is displayed.
III. Results and discussion
A. Entire Reconstruction Latency And Utilization Plots

[image: image9.png]O simuanr

” @ Processor_Speed Wz 26763
oSm_Time: 20
@ Fragment s Bys: 2048 Fogemanision S/

couen posus Py nom

P Resaurces

sros

Fig9: Verification of entire reconstruction block

From the Fig 9 different latency and utilization plots can be obtained by varying the image size in the frame traffic block, number of iterations in IFFT block and GPU speed in the GPU block. To obtain the latency and utilization we have fixed and varied some parameters

B.
Latency plots by varying the image size and number of iterations
Fixed Parameters: CPU_Speed: 2.67GHz, CPU_Mem_Speed:1.5GHz, GPU_Mem_Speed:1.5GHz, GPU_Speed:1GHz, Number of Streaming_Processor:8, Image Size: 128*128
Parameter varied: m iteration, n iteration, image size.

Latency plot

For image size: 128*128 and 512*512

[image: image10.emf]0

5

10

15

20

100 500 1000

128*128(Latency

_sec)

512*512(Latency

_sec)

X-axis: iteration, Y-axis latency with respect to image size
Fig10: Results of the Latency variation with respect to number of iterations and image-size

c.
Latency plots by varying the image size and number of iterations.
Fixed Parameters:

Image Size: 128*128, CPU_Speed:2.67GHz, CPU_Mem_Speed:1333MHz, GPU_Mem_Speed:1.5GHz, Number of Streaming_Processor:8, M iteration: 100, N iteration: 100

Parameter varied:

GPU_Speed

[image: image11.emf]0

20

40

60

80

100

Utilization of Streaming

processor(%)

Utilization(%)

X-axis: GPU_Speed, Y-axis latency with respect to GPU_Speed

Fig 11: Results of the utilization variation with respect to GPU_Speed

We have modeled the entire image reconstruction engine which consists of both hardware components and software components. Modeling of software components consists of K-space, CPU_GPU, GPU_CPU transfer, 2D IFFT and Display. Each of these Software components are mapped to the respective hardware components such as GPU, CPU, PCI-e bus, GPU memory and CPU memory. The mapping of the Components is done with the intervention of OS in which it acts as a bridge between hardware and software components.
we get the performance metrics such as latency, utilization of streaming processor and buffer size.
Checking the latency of entire reconstruction algorithm by varying the image size and iterations and we are also getting the various utilization plots as shown in the Fig 10 and Fig 11 .From the Fig 10, we are verifying the latency w.r.t to number of iterations and image size we can see that for image size 128*128 there is sharp increase in the latency from 100 to 500 iteration and also for the image 512*512 the increase in latency is from 500 to 1000 so by seeing this graph we say that for the image of 128*128 we fix the iteration starting from 500 and also for image size we can fix the iteration starting from 1000.From this graph we can conclude that the number of iteration depends upon the size of the image From Fig 11, we can verify that as the speed of the GPU increased the utilization of streaming processor is decreased at 100MHz.The utilization of 8 streaming processor is 90% and at 500MHz, utilization of 8 Streaming processor is 25%. At 100MHz max of all cores (i.e. 8*32 cores) is been utilized.
IV. Conclusion

We have presented System level model of MR image reconstruction algorithm and GPU architecture using VisualSim tool for Performance evaluation of the Algorithm. In this we done Simulation based evaluation method and highlighted its benefits. Simulation method is faster than the RTL simulation and more accurate than the analytical method. Therefore, simulation based performance analysis can be used in the early design phase to narrow down the design alternatives.

Future Work:

1.) Refine the abstract GPU model to the cycle accurate level

2.) Profiling and cycle counting has to be done for accurate modeling of MR Image Reconstruction algorithm.

3.) Model can also be refined by adding the bus activity and Pipeline stages for each core of the processor.
Acknowledgment

I would like to express my sincere thanks to our Head of the Department, Dr. Sairam Geethanath who has been our beacon light all along the metamorphosis of project on a path breaking technology. I also thank my project guide Prof. Murigendrayya.M.Hiremath for sharing his knowledge, for his valuable guidance and all encouragement leading me throughout the completion of my project. At last but not the least I heartily thank to Mr.Deepak Shankar, CEO, Mirabilis Design, Inc for providing the 1 year license of VisualSim Tool and to Mr.Ranjith Application Engineer, Mirabilis Design, Inc for helping to understand VisualSim Tool.
.
References

[1] David S. Smith, John C. Gore, Thomas E. Yankeelov, and E. BrianWelch, Real- Time Compressive Sensing MRI Reconstruction Using GPU Computing and Split Bregman Methods, Hindawi Publishing Corporation International Journal of Biomedical ImagingVolume 2012J.
[2] Abiodun M. Aibinu, Momoh J. E. Salami, Amir A. Shaﬁe and Athaur Rahman Najeeb, A tutorial:MRI Reconstruction Using Discrete Fourier Transform World Academy of Science, Engineering and Technology 18 2008
[3] VisualSim : Mirabilis Design, Inc http://www.mirabilisdesign.com/
[4] Chandra praksh joshi, A New Performance evaluation Approach for system level Design space Exploration, PhD thesis, IIT Delhi, May 2002
[5] A.C.J kienhnis, Design space Exploration of stream based Dataflow Architectures: Methods and Tools PhD thesis, Delft university of Technology, 1999
[6] CUDA Overview Cliff Woolley, NVIDIA http:// www.nvidia.com.
[7] T. Goldstein and S. Osher, “The split Bregman methods for L1 regularized problems,” The SIAM Journal on Imaging Sciences, vol. 2, pp. 323–343, 2009.
[8] www.intel.com
_1438925383.xls
Chart1

		100		100

		500		500

		1000		1000

128*128(Latency_sec)

512*512(Latency_sec)

3

0.198

12

1

18

5

Sheet1

				128*128(Latency_sec)		512*512(Latency_sec)

		100		3		0.198

		500		12		1

		1000		18		5

				To resize chart data range, drag lower right corner of range.

_1438851110.xls
Chart1

		100MHz

		300MHz

		500MHz

		1000MHz

Utilization(%)

Utilization of Streaming processor(%)

90

40

24

12

Sheet1

				Utilization(%)

		100MHz		90

		300MHz		40

		500MHz		24

		1000MHz		12

				To resize chart data range, drag lower right corner of range.

